502 research outputs found

    Advanced Methods for Botnet Intrusion Detection Systems

    Get PDF

    Mobile Botnet Detection: A Deep Learning Approach Using Convolutional Neural Networks

    Get PDF
    Android, being the most widespread mobile operating systems is increasingly becoming a target for malware. Malicious apps designed to turn mobile devices into bots that may form part of a larger botnet have become quite common, thus posing a serious threat. This calls for more effective methods to detect botnets on the Android platform. Hence, in this paper, we present a deep learning approach for Android botnet detection based on Convolutional Neural Networks (CNN). Our proposed botnet detection system is implemented as a CNN-based model that is trained on 342 static app features to distinguish between botnet apps and normal apps. The trained botnet detection model was evaluated on a set of 6,802 real applications containing 1,929 botnets from the publicly available ISCX botnet dataset. The results show that our CNN-based approach had the highest overall prediction accuracy compared to other popular machine learning classifiers. Furthermore, the performance results observed from our model were better than those reported in previous studies on machine learning based Android botnet detection

    An Introduction to Malware

    Get PDF

    Lightweight Classification of IoT Malware Based on Image Recognition

    Get PDF
    The Internet of Things (IoT) is an extension of the traditional Internet, which allows a very large number of smart devices, such as home appliances, network cameras, sensors and controllers to connect to one another to share information and improve user experiences. Current IoT devices are typically micro-computers for domain-specific computations rather than traditional functionspecific embedded devices. Therefore, many existing attacks, targeted at traditional computers connected to the Internet, may also be directed at IoT devices. For example, DDoS attacks have become very common in IoT environments, as these environments currently lack basic security monitoring and protection mechanisms, as shown by the recent Mirai and Brickerbot IoT botnets. In this paper, we propose a novel light-weight approach for detecting DDos malware in IoT environments.We firstly extract one-channel gray-scale images converted from binaries, and then utilize a lightweight convolutional neural network for classifying IoT malware families. The experimental results show that the proposed system can achieve 94.0% accuracy for the classification of goodware and DDoS malware, and 81.8% accuracy for the classification of goodware and two main malware families
    • …
    corecore