19 research outputs found

    Artificial immune system based security algorithm for mobile ad hoc networks

    Get PDF
    Securing Mobile Ad hoc Networks (MANET) that are a collection of mobile, decentralized, and self-organized nodes is a challenging task. The most fundamental aspect of a MANET is its lack of infrastructure, and most design issues and challenges stem from this characteristic. The lack of a centralized control mechanism brings added difficulty in fault detection and correction. The dynamically changing nature of mobile nodes causes the formation of an unpredictable topology. This varying topology causes frequent traffic routing changes, network partitioning and packet losses. The various attacks that can be carried out on MANETs challenge the security capabilities of the mobile wireless network in which nodes can join, leave and move dynamically. The Human Immune System (HIS) provides a foundation upon which Artificial Immune algorithms are based. The algorithms can be used to secure both host-based and network-based systems. However, it is not only important to utilize the HIS during the development of Artificial Immune System (AIS) based algorithms as much as it is important to introduce an algorithm with high performance. Therefore, creating a balance between utilizing HIS and AIS-based intrusion detection algorithms is a crucial issue that is important to investigate. The immune system is a key to the defence of a host against foreign objects or pathogens. Proper functioning of the immune system is necessary to maintain host homeostasis. The cells that play a fundamental role in this defence process are known as Dendritic Cells (DC). The AIS based Dendritic Cell Algorithm is widely known for its large number of applications and well established in the literature. The dynamic, distributed topology of a MANET provides many challenges, including decentralized infrastructure wherein each node can act as a host, router and relay for traffic. MANETs are a suitable solution for distributed regional, military and emergency networks. MANETs do not utilize fixed infrastructure except where a connection to a carrier network is required, and MANET nodes provide the transmission capability to receive, transmit and route traffic from a sender node to the destination node. In the HIS, cells can distinguish between a range of issues including foreign body attacks as well as cellular senescence. The primary purpose of this research is to improve the security of MANET using the AIS framework. This research presents a new defence approach using AIS which mimics the strategy of the HIS combined with Danger Theory. The proposed framework is known as the Artificial Immune System based Security Algorithm (AISBA). This research also modelled participating nodes as a DC and proposed various signals to indicate the MANET communications state. Two trust models were introduced based on AIS signals and effective communication. The trust models proposed in this research helped to distinguish between a “good node” as well as a “selfish node”. A new MANET security attack was identified titled the Packet Storage Time attack wherein the attacker node modifies its queue time to make the packets stay longer than necessary and then circulates stale packets in the network. This attack is detected using the proposed AISBA. This research, performed extensive simulations with results to support the effectiveness of the proposed framework, and statistical analysis was done which showed the false positive and false negative probability falls below 5%. Finally, two variations of the AISBA were proposed and investigated, including the Grudger based Artificial Immune System Algorithm - to stimulate selfish nodes to cooperate for the benefit of the MANET and Pain reduction based Artificial Immune System Algorithm - to model Pain analogous to HIS

    Algorithms based on spider daddy long legs for finding the optimal route in securing mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) are wireless networks that are subject to severe attacks, such as the black hole attack. One of the goals in the research is to find a method to prevent black hole attacks without decreasing network throughput or increasing routing overhead. The routing mechanism in define uses route requests (RREQs; for discovering routes) and route replies (RREPs; for receiving paths). However, this mechanism is vulnerable to attacks by malicious black hole nodes. The mechanism is developed to find the shortest secure path and to reduce overhead using the information that is available in the routing tables as an input to propose a more complex nature-inspired algorithm. The new method is called the Daddy Long-Legs Algorithm (PGO-DLLA), which modifies the standard AODV and optimizes the routing process. This method avoids dependency exclusively on the hop counts and destination sequence numbers (DSNs) that are exploited by malicious nodes in the standard AODV protocol. The experiment by performance metrics End-to-End delay and packet delivery ratio are compared in order to determine the best effort traffic. The results showed the PGO-DLLA improvement of the shortest and secure routing from black hole attack in MANET. In addition, the results indicate better performance than the related works algorithm with respect to all metrics excluding throughput which AntNet is best in routing when the pause time be more than 40 seconds. PGODLLA is able to improve the route discovery against the black hole attacks in AODV. Experiments in this thesis have shown that PGO-DLLA is able to reduce the normalized routing load, end-to-end delay, and packet loss and has a good throughput and packet delivery ratio when compared with the standard AODV protocol, BAODV protocol, and the current related protocols that enhance the routing security of the AODV protocols

    Intrusion detection and response model for mobile ad hoc networks.

    Get PDF
    This dissertation presents a research whose objective is to design and develop an intrusion detection and response model for Mobile Ad hoc NETworks (MANET). Mobile ad hoc networks are infrastructure-free, pervasive and ubiquitous in nature, without any centralized authority. These unique MANET characteristics present several changes to secure them. The proposed security model is called the Intrusion Detection and Response for Mobile Ad hoc Networks (IDRMAN). The goal of the proposed model is to provide a security framework that will detect various attacks and take appropriate measures to control the attack automatically. This model is based on identifying critical system parameters of a MANET that are affected by various types of attacks, and continuously monitoring the values of these parameters to detect and respond to attacks. This dissertation explains the design and development of the detection framework and the response framework of the IDRMAN. The main aspects of the detection framework are data mining using CART to identify attack sensitive network parameters from the wealth of raw network data, statistical processing using six sigma to identify the thresholds for the attack sensitive parameters and quantification of the MANET node state through a measure called the Threat Index (TI) using fuzzy logic methodology. The main aspects of the response framework are intruder identification and intruder isolation through response action plans. The effectiveness of the detection and response framework is mathematically analyzed using probability techniques. The detection framework is also evaluated by performance comparison experiments with related models, and through performance evaluation experiments from scalability perspective. Performance metrics used for assessing the detection aspect of the proposed model are detection rate and false positive rate at different node mobility speed. Performance evaluation experiments for scalability are with respect to the size of the MANET, where more and more mobile nodes are added into the MANET at varied mobility speed. The results of both the mathematical analysis and the performance evaluation experiments demonstrate that the IDRMAN model is an effective and viable security model for MANET

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    Measuring Performances of a White-Box Approach in the IoT Context

    Get PDF
    The internet of things (IoT) refers to all the smart objects that are connected to other objects, devices or servers and that are able to collect and share data, in order to "learn" and improve their functionalities. Smart objects suffer from lack of memory and computational power, since they are usually lightweight. Moreover, their security is weakened by the fact that smart objects can be placed in unprotected environments, where adversaries are able to play with the symmetric-key algorithm used and the device on which the cryptographic operations are executed. In this paper, we focus on a family of white-box symmetric ciphers substitution-permutation network (SPN)box, extending and improving our previous paper on the topic presented at WIDECOM2019. We highlight the importance of white-box cryptography in the IoT context, but also the need to have a fast black-box implementation (server-side) of the cipher. We show that, modifying an internal layer of SPNbox, we are able to increase the key length and to improve the performance of the implementation. We measure these improvements (a) on 32/64-bit architectures and (b) in the IoT context by encrypting/decrypting 10,000 payloads of lightweight messaging protocol Message Queuing Telemetry Transport (MQTT)

    A reliable trust-aware reinforcement learning based routing protocol for wireless medical sensor networks.

    Get PDF
    Interest in the Wireless Medical Sensor Network (WMSN) is rapidly gaining attention thanks to recent advances in semiconductors and wireless communication. However, by virtue of the sensitive medical applications and the stringent resource constraints, there is a need to develop a routing protocol to fulfill WMSN requirements in terms of delivery reliability, attack resiliency, computational overhead and energy efficiency. This doctoral research therefore aims to advance the state of the art in routing by proposing a lightweight, reliable routing protocol for WMSN. Ensuring a reliable path between the source and the destination requires making trustaware routing decisions to avoid untrustworthy paths. A lightweight and effective Trust Management System (TMS) has been developed to evaluate the trust relationship between the sensor nodes with a view to differentiating between trustworthy nodes and untrustworthy ones. Moreover, a resource-conservative Reinforcement Learning (RL) model has been proposed to reduce the computational overhead, along with two updating methods to speed up the algorithm convergence. The reward function is re-defined as a punishment, combining the proposed trust management system to defend against well-known dropping attacks. Furthermore, with a view to addressing the inborn overestimation problem in Q-learning-based routing protocols, we adopted double Q-learning to overcome the positive bias of using a single estimator. An energy model is integrated with the reward function to enhance the network lifetime and balance energy consumption across the network. The proposed energy model uses only local information to avoid the resource burdens and the security concerns of exchanging energy information. Finally, a realistic trust management testbed has been developed to overcome the limitations of using numerical analysis to evaluate proposed trust management schemes, particularly in the context of WMSN. The proposed testbed has been developed as an additional module to the NS-3 simulator to fulfill usability, generalisability, flexibility, scalability and high-performance requirements
    corecore