2,963 research outputs found

    PRS-Net: planar reflective symmetry detection net for 3D models

    Get PDF
    In geometry processing, symmetry is a universal type of high-level structural information of 3D models and beneļ¬ts many geometry processing tasks including shape segmentation, alignment, matching, and completion. Thus it is an important problem to analyze various symmetry forms of 3D shapes. Planar reļ¬‚ective symmetry is the most fundamental one. Traditional methods based on spatial sampling can be time-consuming and may not be able to identify all the symmetry planes. In this paper, we present a novel learning framework to automatically discover global planar reļ¬‚ective symmetry of a 3D shape. Our framework trains an unsupervised 3D convolutional neural network to extract global model features and then outputs possible global symmetry parameters, where input shapes are represented using voxels. We introduce a dedicated symmetry distance loss along with a regularization loss to avoid generating duplicated symmetry planes. Our network can also identify generalized cylinders by predicting their rotation axes. We further provide a method to remove invalid and duplicated planes and axes. We demonstrate that our method is able to produce reliable and accurate results. Our neural network based method is hundreds of times faster than the state-of-the-art methods, which are based on sampling. Our method is also robust even with noisy or incomplete input surfaces

    PRS-Net: Planar Reflective Symmetry Detection Net for 3D Models

    Get PDF
    In geometry processing, symmetry is a universal type of high-level structural information of 3D models and benefits many geometry processing tasks including shape segmentation, alignment, matching, and completion. Thus it is an important problem to analyze various symmetry forms of 3D shapes. Planar reflective symmetry is the most fundamental one. Traditional methods based on spatial sampling can be time-consuming and may not be able to identify all the symmetry planes. In this paper, we present a novel learning framework to automatically discover global planar reflective symmetry of a 3D shape. Our framework trains an unsupervised 3D convolutional neural network to extract global model features and then outputs possible global symmetry parameters, where input shapes are represented using voxels. We introduce a dedicated symmetry distance loss along with a regularization loss to avoid generating duplicated symmetry planes. Our network can also identify generalized cylinders by predicting their rotation axes. We further provide a method to remove invalid and duplicated planes and axes. We demonstrate that our method is able to produce reliable and accurate results. Our neural network based method is hundreds of times faster than the state-of-the-art methods, which are based on sampling. Our method is also robust even with noisy or incomplete input surfaces.Comment: Corrected typo

    Holoimages on Diffraction Screens

    Get PDF

    Beyond backscattering: Optical neuroimaging by BRAD

    Full text link
    Optical coherence tomography (OCT) is a powerful technology for rapid volumetric imaging in biomedicine. The bright field imaging approach of conventional OCT systems is based on the detection of directly backscattered light, thereby waiving the wealth of information contained in the angular scattering distribution. Here we demonstrate that the unique features of few-mode fibers (FMF) enable simultaneous bright and dark field (BRAD) imaging for OCT. As backscattered light is picked up by the different modes of a FMF depending upon the angular scattering pattern, we obtain access to the directional scattering signatures of different tissues by decoupling illumination and detection paths. We exploit the distinct modal propagation properties of the FMF in concert with the long coherence lengths provided by modern wavelength-swept lasers to achieve multiplexing of the different modal responses into a combined OCT tomogram. We demonstrate BRAD sensing for distinguishing differently sized microparticles and showcase the performance of BRAD-OCT imaging with enhanced contrast for ex vivo tumorous tissue in glioblastoma and neuritic plaques in Alzheimer's disease
    • ā€¦
    corecore