466 research outputs found

    Online and Offline BIST in IP-Core Design

    Get PDF
    This article presents an online and offline built-in self-test architecture implemented as an SRAM intellectual-property core for telecommunication applications. The architecture combines fault-latency reduction, code-based fault detection, and architecture-based fault avoidance to meet reliability constraint

    Fault-tolerant fpga for mission-critical applications.

    Get PDF
    One of the devices that play a great role in electronic circuits design, specifically safety-critical design applications, is Field programmable Gate Arrays (FPGAs). This is because of its high performance, re-configurability and low development cost. FPGAs are used in many applications such as data processing, networks, automotive, space and industrial applications. Negative impacts on the reliability of such applications result from moving to smaller feature sizes in the latest FPGA architectures. This increases the need for fault-tolerant techniques to improve reliability and extend system lifetime of FPGA-based applications. In this thesis, two fault-tolerant techniques for FPGA-based applications are proposed with a built-in fault detection region. A low cost fault detection scheme is proposed for detecting faults using the fault detection region used in both schemes. The fault detection scheme primarily detects open faults in the programmable interconnect resources in the FPGAs. In addition, Stuck-At faults and Single Event Upsets (SEUs) fault can be detected. For fault recovery, each scheme has its own fault recovery approach. The first approach uses a spare module and a 2-to-1 multiplexer to recover from any fault detected. On the other hand, the second approach recovers from any fault detected using the property of Partial Reconfiguration (PR) in the FPGAs. It relies on identifying a Partially Reconfigurable block (P_b) in the FPGA that is used in the recovery process after the first faulty module is identified in the system. This technique uses only one location to recover from faults in any of the FPGA’s modules and the FPGA interconnects. Simulation results show that both techniques can detect and recover from open faults. In addition, Stuck-At faults and Single Event Upsets (SEUs) fault can also be detected. Finally, both techniques require low area overhead

    Use of CCD to Detect Terrestrial Cosmic Rays at Ground Level: Altitude vs. Underground Experiments, Modeling and Numerical Monte Carlo Simulation

    No full text
    International audienceIn this work, we used a commercial charge-coupled device (CCD) camera to detect and monitor terrestrial cosmic rays at ground level. Multi-site characterization has been performed at sea level (Marseille), underground (Modane Underground Laboratory) and at mountain altitude (Aiguille du Midi-Chamonix Mont-Blanc at +3,780 m of altitude) to separate the atmospheric and alpha particle emitter's contributions in the CCD response. An additional experiment at avionics altitude during a long-haul flight has been also conducted. Experiment results demonstrate the importance of the alpha contamination in the CCD response at ground level and its sensitivity to charged particles. Experimental data as a function of CCD orientation also suggests an anisotropy of the particle flux for which the device is sensitive. A complete computational modeling of the CCD imager has been conducted, based on a simplified 3D CCD architecture deduced from a reverse engineering study using electron microscopy and physico-chemical analysis. Monte Carlo simulations evidence the major contribution of low energy (below a few MeV) protons and muons in the CCD response. Comparison between experiments and simulation shows a good agreement at ground level, fully validated at avionics altitudes with a much higher particle flux and a different particle cocktail composition

    Random access memory testing : theory and practice : the gains of fault modelling

    Get PDF

    Sensor de performance para células de memória CMOS

    Get PDF
    Vivemos hoje em dia tempos em que quase tudo tem um pequeno componente eletrónico e por sua vez esse componente precisa de uma memória para guardar as suas instruções. Dentro dos vários tipos de memórias, as Complementary Metal Oxide Semiconductor (CMOS) são as que mais utilização têm nos circuitos integrados e, com o avançar da tecnologia a ficar cada vez com uma escala mais reduzida, faz com que os problemas de performance e fiabilidade sejam uma constante. Efeitos como o BTI (Bias Thermal Instability), TDDB (Time Dependent Dielectric Breakdown), HCI (Hot Carrier Injection), EM (Electromigration), ao longo do tempo vão deteriorando os parâmetros físicos dos transístores de efeito de campo (MOSFET), mudando as suas propriedades elétricas. Associado ao efeito de BTI podemos ter o efeito PBTI (Positive BTI), que afeta mais os transístores NMOS, e o efeito NBTI (Negative BTI), que afeta mais os transístores PMOS. Se para nanotecnologias até 32 nanómetros o efeito NBTI é dominante, para tecnologias mais baixas os 2 efeitos são igualmente importantes. Porém, existem ainda outras variações no desempenho que podem colocar em causa o bom funcionamento dos circuitos, como as variações de processo (P), tensão (V) e temperatura (T), ou considerando todas estas variações, e de uma forma genérica, PVTA (Process, Voltage, Temperature and Aging). Tendo como base as células de memória de acesso aleatório (RAM, Random Access Memory), em particular as memórias estáticas (SRAM, Static Random Access Memory) e dinâmicas (DRAM, Dynamic Random Access Memory) que possuem tempos de leitura e escrita precisos, estas ficam bastante expostas ao envelhecimento dos seus componentes e, consecutivamente, acontece um decréscimo na sua performance, resultando em transições mais lentas, que por sua vez fará com que existam leituras e escritas mais lentas e poderão ocorrer erros nessas leituras e escritas . Para além destes fenómenos, temos também o facto de a margem de sinal ruido (SNM - Static Noise Margin) diminuir, fazendo com que a fiabilidade da memória seja colocada em causa. O envelhecimento das memórias CMOS traduz-se, portanto, na ocorrência de erros nas memórias ao longo do tempo, o que é indesejável, especialmente em sistemas críticos onde a ocorrência de um erro ou uma falha na memória pode significar por em risco sistemas de elevada importância e fundamentais (por exemplo, em sistemas de segurança, um erro pode desencadear um conjunto de ações não desejadas). Anteriormente já foram apresentadas algumas soluções para esta monitorização dos erros de uma memória, disponíveis na literatura, como é o caso do sensor de envelhecimento embebido no circuito OCAS (On-Chip Aging Sensor), que permite detetar envelhecimento numa SRAM provocado pelo envelhecimento por NBTI. Contudo este sensor demonstra algumas limitações, pois apenas se aplica a um conjunto de células SRAM conectadas a uma bit line, não sendo aplicado individualmente a outras células de memória como uma DRAM e não contemplando o efeito PBTI. Outra solução apresentada anteriormente é o Sensor de Envelhecimento para Células de Memória CMOS que demonstra alguma evolução em relação ao sensor OCAS. Contudo, ainda tem limitações, como é o caso de estar bastante dependente do sincronismo com a memória e não permitir qualquer tipo de calibração do sistema ao longo do seu funcionamento. O trabalho apresentado nesta dissertação resolve muitos dos problemas existentes nos trabalhos anteriores. Isto é, apresenta-se um sensor de performance para memórias capaz de reconhecer quando é que a memória pode estar na eminência de falhar, devido a fatores que afetam o desempenho da memória nas operações de escrita e leitura. Ou seja, sinaliza de forma preditiva as falhas. Este sensor está dividido em três grandes partes, como a seguir se descreve. O Transistion Detector é uma delas, que funciona como um “conversor” das transições na bit line da memória para o sensor, criando pulsos de duração proporcional à duração da transição na bit line, sendo que uma transição rápida resulta em pulsos curtos e uma transição lenta resulta em pulsos longos. Esta parte do circuito apresenta 2 tipos de configurações para o caso de ser aplicado numa SRAM, sendo que uma das configurações é para as memórias SRAM inicializadas a VDD, e a segunda configuração para memórias SRAM inicializadas a VDD/2. É também apresentada uma terceira configuração para o caso de o detetor ser aplicado numa DRAM. O funcionamento do detetor de transições está baseado num conjunto de inversores desequilibrados (ou seja, com capacidades de condução diferentes entre o transístor N e P no inversor), criando assim inversores do tipo N (com o transístor N mais condutivo que o P) e inversores do tipo P (com o transístor P mais condutivo que o N) que respondem de forma diferente às transições de 1 para 0 e vice-versa. Estas diferenças serão cruciais para a criação do pulso final que entrará no Pulse Detetor. Este segundo bloco do sensor é responsável por carregar um condensador com uma tensão proporcional ao tempo que a bit line levou a transitar. É nesta parte que se apresenta uma caraterística nova e importante, quando comparado com as soluções já existentes, que é a capacidade do sensor poder ser calibrado. Para isso, é utilizado um conjunto de transístores para carregar o condensador durante o impulso gerado no detetor de transições, que permitem aumentar ou diminuir a resistência de carga do condensador, ficando este com mais ou menos tensão (a tensão proporcional ao tempo da transição da bit line) a ser usada na Comparação seguinte. O terceiro grande bloco deste sensor é resumidamente um bloco comparador, que compara a tensão guardada no condensador com uma tensão de referência disponível no sensor e definida durante o projeto. Este comparador tem a função de identificar qual destas 2 tensões é a mais alta (a do condensador, que é proporcional ao tempo de transição da bit line, ou a tensão de referência) e fazer com a mesma seja “disparada” para VDD, sendo que a tensão mais baixa será colocada a VSS. Desta forma é sinalizado se a transição que está a ser avaliada deve ser considerada um erro ou não. Para controlar todo o processo, o sensor tem na sua base de funcionamento um controlador (uma máquina de estados finita composta por 3 estados). O primeiro estado do controlador é o estado de Reset, que faz com que todos os pontos do circuito estejam com as tenções necessárias ao início de funcionamento do mesmo. O segundo estado é o Sample, que fica a aguardar uma transição na bit line para ser validada pelo sensor e fazer com que o mesmo avance para o terceiro estado, que é o de Compare, onde ativa o comparador do sensor e coloca no exterior o resultado dessa comparação. Assim, se for detetado uma transição demasiado lenta na bit line, que é um sinal de erro, o mesmo será sinalizado para o exterior activando o sinal de saída. Caso o sensor não detete nenhum erro nas transições, o sinal de saída não é activado. O sensor tem a capacidade de funcionar em modo on-line, ou seja, não é preciso desligar o circuito de memória do seu funcionamento normal para poder ser testado. Para além disso, pode ainda ser utilizado internamente na memória, como sensor local (monitorizando as células reais de memória), ou externamente, como sensor global, caso seja colocado a monitorizar uma célula de memória fictícia.Within the several types of memories, the Complementary Metal Oxide Semiconductor (CMOS) are the most used in the integrated circuits and, as technology advances and becomes increasingly smaller in scale, it makes performance and reliability a constant problem. Effects such as BTI (Bias Thermal Instability), the positive (PBTI - Positive BTI) and the negative (NBTI - Negative BTI), TDDB (Time Dependent Dielectric Breakdown), HCI (Hot Carrier Injection), EM (Electromigration), etc., are aging effects that contribute to a cumulatively degradation of the transistors. Moreover, other parametric variations may also jeopardize the proper functioning of circuits and contribute to reduce circuits’ performance, such as process variations (P), power-supply voltage variations (V) and temperature variations (T), or considering all these variations, and in a generic way, PVTA (Process, Voltage, Temperature and Aging). The Sensor proposed in this paper aims to signalize these problems so that the user knows when the memory operation may be compromised. The sensor is made up of three important parts, the Transition Detector, the Pulse Detector and the Comparator, creating a sensor that converts bit line transition created in a memory operation (read or write) into a pulse and a voltage, that can be compared with a reference voltage available in the sensor. If the reference voltage is higher than the voltage proportional to the bit line transition time, the sensor output is not activated; but if the bit line transition time is high enough to generate a voltage higher than the reference voltage in the sensor, the sensor output signalizes a predictive error, denoting that the memory performance is in a critical state that may lead to an error if corrective measures are not taken. One important feature in this sensor topology is that it can be calibrated during operation, by controlling sensor’s sensibility to the bit line transition. Another important feature is that it can be applied locally, to monitor the online operation of the memory, or globally, by monitoring a dummy memory in pre-defined conditions. Moreover, it can be applied to SRAM or DRAM, being the first online sensor available for DRAM memories

    Comparing the impact of power supply voltage on CMOS-and FinFET-based SRAMs in the presence of resistive defects

    Get PDF
    CMOS technology scaling has reached its limit at the 22 nm technology node due to several factors including Process Variations (PV), increased leakage current, Random Dopant Fluctuation (RDF), and mainly the Short-Channel Effect (SCE). In order to continue the miniaturization process via technology down-scaling while preserving system reliability and performance, Fin Field-Effect Transistors (FinFETs) arise as an alternative to CMOS transistors. In parallel, Static Random-Access Memories (SRAMs) increasingly occupy great part of Systems-on-Chips’ (SoCs) silicon area, making their reliability an important issue. SRAMs are designed to reach densities at the limit of the manufacturing process, making this component susceptible to manufacturing defects, including the resistive ones. Such defects may cause dynamic faults during the circuits’ lifetime, an important cause of test escape. Thus, the identification of the proper faulty behavior taking different operating conditions into account is considered crucial to guarantee the development of more suitable test methodologies. In this context, a comparison between the behavior of a 22 nm CMOS-based and a 20 nm FinFET-based SRAM in the presence of resistive defects is carried out considering different power supply voltages. In more detail, the behavior of defective cells operating under different power supply voltages has been investigated performing SPICE simulations. Results show that the power supply voltage plays an important role in the faulty behavior of both CMOS- and FinFET-based SRAM cells in the presence of resistive defects but demonstrate to be more expressive when considering the FinFET-based memories. Studying different operating temperatures, the results show an expressively higher occurrence of dynamic faults in FinFET-based SRAMs when compared to CMOS technology

    Variation Analysis, Fault Modeling and Yield Improvement of Emerging Spintronic Memories

    Get PDF

    Dependability assessment of by-wire control systems using fault injection

    Full text link
    This paper is focused on the validation by means of physical fault injection at pin-level of a time-triggered communication controller: the TTP/C versions C1 and C2. The controller is a commercial off-the-shelf product used in the design of by-wire systems. Drive-by-wire and fly-by-wire active safety controls aim to prevent accidents. They are considered to be of critical importance because a serious situation may directly affect user safety. Therefore, dependability assessment is vital in their design. This work was funded by the European project `Fault Injection for TTA¿ and it is divided into two parts. In the first part, there is a verification of the dependability specifications of the TTP communication protocol, based on TTA, in the presence of faults directly induced in communication lines. The second part contains a validation and improvement proposal for the architecture in case of data errors. Such errors are due to faults that occurred during writing (or reading) actions on memory or during data storage.Blanc Clavero, S.; Bonastre Pina, AM.; Gil, P. (2009). Dependability assessment of by-wire control systems using fault injection. Journal of Systems Architecture. 55(2):102-113. doi:10.1016/j.sysarc.2008.09.003S10211355
    corecore