1,670 research outputs found

    An efficient CDMA decoder for correlated information sources

    Full text link
    We consider the detection of correlated information sources in the ubiquitous Code-Division Multiple-Access (CDMA) scheme. We propose a message-passing based scheme for detecting correlated sources directly, with no need for source coding. The detection is done simultaneously over a block of transmitted binary symbols (word). Simulation results are provided demonstrating a substantial improvement in bit-error-rate in comparison with the unmodified detector and the alternative of source compression. The robustness of the error-performance improvement is shown under practical model settings, including wrong estimation of the generating Markov transition matrix and finite-length spreading codes.Comment: 11 page

    Blind user detection in doubly-dispersive DS/CDMA channels

    Full text link
    In this work, we consider the problem of detecting the presence of a new user in a direct-sequence/code-division-multiple-access (DS/CDMA) system with a doubly-dispersive fading channel, and we propose a novel blind detection strategy which only requires knowledge of the spreading code of the user to be detected, but no prior information as to the time-varying channel impulse response and the structure of the multiaccess interference. The proposed detector has a bounded constant false alarm rate (CFAR) under the design assumptions, while providing satisfactory detection performance even in the presence of strong cochannel interference and high user mobility.Comment: Accepted for publication on IEEE Transactions on Signal Processin

    Fast Decoder for Overloaded Uniquely Decodable Synchronous Optical CDMA

    Full text link
    In this paper, we propose a fast decoder algorithm for uniquely decodable (errorless) code sets for overloaded synchronous optical code-division multiple-access (O-CDMA) systems. The proposed decoder is designed in a such a way that the users can uniquely recover the information bits with a very simple decoder, which uses only a few comparisons. Compared to maximum-likelihood (ML) decoder, which has a high computational complexity for even moderate code lengths, the proposed decoder has much lower computational complexity. Simulation results in terms of bit error rate (BER) demonstrate that the performance of the proposed decoder for a given BER requires only 1-2 dB higher signal-to-noise ratio (SNR) than the ML decoder.Comment: arXiv admin note: substantial text overlap with arXiv:1806.0395

    MIMO Assisted Space-Code-Division Multiple-Access: Linear Detectors and Performance over Multipath Fading Channels

    No full text
    In this contribution we propose and investigate a multiple-input multiple-output space-division, code-division multiple-access (MIMO SCDMA) scheme. The main objective is to improve the capacity of the existing DS-CDMA systems, for example, for supporting an increased number of users, by deploying multiple transmit and receive antennas in the corresponding systems and by using some advanced transmission and detection algorithms. In the proposed MIMO SCDMA system, each user can be distinguished jointly by its spreading code-signature and its unique channel impulse response (CIR) transfer function referred to as spatial-signature. Hence, the number of users might be supported by the MIMO SCDMA system and the corresponding achievable performance are determined by the degrees of freedom provided by both the code-signatures and the spatial-signatures, as well as by how efficiently the degrees of freedom are exploited. Specifically, the number of users supported by the proposed MIMO SCDMA can be significantly higher than the number of chips per bit, owing to the employment of space-division. In this contribution space-time spreading (STS) is employed for configuring the transmitted signals. Three types of low-complexity linear detectors, namely correlation, decorrelating and minimum mean-square error (MMSE), are considered for detecting the MIMO SCDMA signals. The BER performance of the MIMO SCDMA system associated with these linear detectors are evaluated by simulations, when assuming that the MIMO SCDMA signals are transmitted over multipath Rayleigh fading channels. Our study and simulation results show that MIMO SCDMA assisted by multiuser detection is capable of facilitating joint space-time de-spreading, multipath combining and receiver diversity combining, while simultaneously suppressing the multiuser interfering signals

    Time-Hopping Multicarrier Code-Division Multiple-Access

    No full text
    A time-hopping multicarrier code-division multiple-access (TH/MC-CDMA) scheme is proposed and investigated. In the proposed TH/MC-CDMA each information symbol is transmitted by a number of time-domain pulses with each time-domain pulse modulating a subcarrier. The transmitted information at the receiver is extracted from one of the, say MM, possible time-slot positions, i.e., assuming that MM-ary pulse position modulation is employed. Specifically, in this contribution we concentrate on the scenarios such as system design, power spectral density (PSD) and single-user based signal detection. The error performance of the TH/MC-CDMA system is investigated, when each subcarrier signal experiences flat Nakagami-mm fading in addition to additive white Gaussian noise (AWGN). According to our analysis and results, it can be shown that the TH/MC-CDMA signal is capable of providing a near ideal PSD, which is flat over the system bandwidth available, while decreases rapidly beyond that bandwidth. Explicitly, signals having this type of PSD is beneficial to both broadband and ultra-wide bandwidth (UWB) communications. Furthermore, our results show that, when optimum user address codes are employed, the single-user detector considered is near-far resistant, provided that the number of users supported by the system is lower than the number of subcarriers used for conveying an information symbol

    Radial Basis Function Aided Space-Time Equalization in Dispersive Fading Uplink Environments

    No full text
    A novel Radial Basis Function Network (RBFN) assisted Decision-Feedback aided Space-Time Equalizer (DF-STE) designed for receivers employing multiple antennas is proposed. The Bit Error Rate (BER) performance of the RBFN aided DF-STE is evaluated when communicating over correlated Rayleigh fading channels, whose Channel Impulse Response (CIR) is estimated using a Kalman filtering based channel estimator. The proposed receiver structure outperforms the linear Minimum Mean-Squared Error benchmarker and it is less sensitive to both error propagation and channel estimation errors
    corecore