511 research outputs found

    MadDroid: Characterising and Detecting Devious Ad Content for Android Apps

    Get PDF
    Advertisement drives the economy of the mobile app ecosystem. As a key component in the mobile ad business model, mobile ad content has been overlooked by the research community, which poses a number of threats, e.g., propagating malware and undesirable contents. To understand the practice of these devious ad behaviors, we perform a large-scale study on the app contents harvested through automated app testing. In this work, we first provide a comprehensive categorization of devious ad contents, including five kinds of behaviors belonging to two categories: \emph{ad loading content} and \emph{ad clicking content}. Then, we propose MadDroid, a framework for automated detection of devious ad contents. MadDroid leverages an automated app testing framework with a sophisticated ad view exploration strategy for effectively collecting ad-related network traffic and subsequently extracting ad contents. We then integrate dedicated approaches into the framework to identify devious ad contents. We have applied MadDroid to 40,000 Android apps and found that roughly 6\% of apps deliver devious ad contents, e.g., distributing malicious apps that cannot be downloaded via traditional app markets. Experiment results indicate that devious ad contents are prevalent, suggesting that our community should invest more effort into the detection and mitigation of devious ads towards building a trustworthy mobile advertising ecosystem.Comment: To be published in The Web Conference 2020 (WWW'20

    Emerging Phishing Trends and Effectiveness of the Anti-Phishing Landing Page

    Full text link
    Each month, more attacks are launched with the aim of making web users believe that they are communicating with a trusted entity which compels them to share their personal, financial information. Phishing costs Internet users billions of dollars every year. Researchers at Carnegie Mellon University (CMU) created an anti-phishing landing page supported by Anti-Phishing Working Group (APWG) with the aim to train users on how to prevent themselves from phishing attacks. It is used by financial institutions, phish site take down vendors, government organizations, and online merchants. When a potential victim clicks on a phishing link that has been taken down, he / she is redirected to the landing page. In this paper, we present the comparative analysis on two datasets that we obtained from APWG's landing page log files; one, from September 7, 2008 - November 11, 2009, and other from January 1, 2014 - April 30, 2014. We found that the landing page has been successful in training users against phishing. Forty six percent users clicked lesser number of phishing URLs from January 2014 to April 2014 which shows that training from the landing page helped users not to fall for phishing attacks. Our analysis shows that phishers have started to modify their techniques by creating more legitimate looking URLs and buying large number of domains to increase their activity. We observed that phishers are exploiting ICANN accredited registrars to launch their attacks even after strict surveillance. We saw that phishers are trying to exploit free subdomain registration services to carry out attacks. In this paper, we also compared the phishing e-mails used by phishers to lure victims in 2008 and 2014. We found that the phishing e-mails have changed considerably over time. Phishers have adopted new techniques like sending promotional e-mails and emotionally targeting users in clicking phishing URLs

    Hiding in Plain Sight: A Longitudinal Study of Combosquatting Abuse

    Full text link
    Domain squatting is a common adversarial practice where attackers register domain names that are purposefully similar to popular domains. In this work, we study a specific type of domain squatting called "combosquatting," in which attackers register domains that combine a popular trademark with one or more phrases (e.g., betterfacebook[.]com, youtube-live[.]com). We perform the first large-scale, empirical study of combosquatting by analyzing more than 468 billion DNS records---collected from passive and active DNS data sources over almost six years. We find that almost 60% of abusive combosquatting domains live for more than 1,000 days, and even worse, we observe increased activity associated with combosquatting year over year. Moreover, we show that combosquatting is used to perform a spectrum of different types of abuse including phishing, social engineering, affiliate abuse, trademark abuse, and even advanced persistent threats. Our results suggest that combosquatting is a real problem that requires increased scrutiny by the security community.Comment: ACM CCS 1

    Understanding the difference in malicious activity between Surface Web and Dark Web

    Get PDF
    The world has seen a dramatic increase in illegal activities on the Internet. Prior research has investigated different types of cybercrime, especially in the Surface Web, which is the portion of the content on the World Wide Web that popular engines may index. At the same time, evidence suggests cybercriminals are moving their operations to the Dark Web. This portion is not indexed by conventional search engines and is accessed through network overlays such as The Onion Router network. Since the Dark Web provides anonymity, cybercriminals use this environment to avoid getting caught or blocked, which represents a significant challenge for researchers. This research project investigates the modus operandi of cybercriminals on the Surface Web and the Dark Web to understand how cybercrime unfolds in different layers of the Web. Honeypots, specialised crawlers and extraction tools are used to analyse different types of online crimes. In addition, quantitative analysis is performed to establish comparisons between the two Web environments. This thesis is comprised of three studies. The first examines the use of stolen account credentials leaked in different outlets on the Surface and Dark Web to understand how cybercriminals interact with stolen credentials in the wild. In the second study, malvertising is analysed from the user's perspective to understand whether using different technologies to access the Web could influence the probability of malware infection. In the final study, underground forums on the Surface and Dark Web are analysed to observe differences in trading patterns in both environments. Understanding how criminals operate in different Web layers is essential to developing policies and countermeasures to prevent cybercrime more efficiently

    A Measurement Study on the Advertisements Displayed to Web Users Coming from the Regular Web and from Tor

    Get PDF
    Online advertising is an effective way for businesses to find new customers and expand their reach to a great variety of audiences. Due to the large number of participants interacting in the process, advertising networks act as brokers between website owners and businesses facilitating the display of advertisements. Unfortunately, this system is abused by cybercriminals to perform illegal activities such as malvertising. In this paper, we perform a measurement of malvertising from the user point of view. Our goal is to collect advertisements from a regular Internet connection and using The Onion Router in an attempt to understand whether using different technologies to access the Web could influence the probability of infection. We compare the data from our experiments to find differences in the malvertising activity observed. We show that the level of maliciousness is similar between the two types of accesses. Nevertheless, there are significant differences related to the malicious landing pages delivered in each type of access. Our results provide the research community with insights into how ad traffic is treated depending on the way users access Web content

    Characterizing Location-based Mobile Tracking in Mobile Ad Networks

    Full text link
    Mobile apps nowadays are often packaged with third-party ad libraries to monetize user data
    • …
    corecore