268 research outputs found

    Low-Diameter Clusters in Network Analysis

    Get PDF
    In this dissertation, we introduce several novel tools for cluster-based analysis of complex systems and design solution approaches to solve the corresponding optimization problems. Cluster-based analysis is a subfield of network analysis which utilizes a graph representation of a system to yield meaningful insight into the system structure and functions. Clusters with low diameter are commonly used to characterize cohesive groups in applications for which easy reachability between group members is of high importance. Low-diameter clusters can be mathematically formalized using a clique and an s-club (with relatively small values of s), two concepts from graph theory. A clique is a subset of vertices adjacent to each other and an s-club is a subset of vertices inducing a subgraph with a diameter of at most s. A clique is actually a special case of an s-club with s = 1, hence, having the shortest possible diameter. Two topics of this dissertation focus on graphs prone to uncertainty and disruptions, and introduce several extensions of low-diameter models. First, we introduce a robust clique model in graphs where edges may fail with a certain probability and robustness is enforced using appropriate risk measures. With regard to its ability to capture underlying system uncertainties, finding the largest robust clique is a better alternative to the problem of finding the largest clique. Moreover, it is also a hard combinatorial optimization problem, requiring some effective solution techniques. To this aim, we design several heuristic approaches for detection of large robust cliques and compare their performance. Next, we consider graphs for which uncertainty is not explicitly defined, studying connectivity properties of 2-clubs. We notice that a 2-club can be very vulnerable to disruptions, so we enhance it by reinforcing additional requirements on connectivity and introduce a biconnected 2-club concept. Additionally, we look at the weak 2-club counterpart which we call a fragile 2-club (defined as a 2-club that is not biconnected). The size of the largest biconnected 2-club in a graph can help measure overall system reachability and connectivity, whereas the largest fragile 2-club can identify vulnerable parts of the graph. We show that the problem of finding the largest fragile 2-club is polynomially solvable whereas the problem of finding the largest biconnected 2-club is NP-hard. Furthermore, for the former, we design a polynomial time algorithm and for the latter - combinatorial branch-and-bound and branch-and-cut algorithms. Lastly, we once again consider the s-club concept but shift our focus from finding the largest s-club in a graph to the problem of partitioning the graph into the smallest number of non-overlapping s-clubs. This problem cannot only be applied to derive communities in the graph, but also to reduce the size of the graph and derive its hierarchical structure. The problem of finding the minimum s-club partitioning is a hard combinatorial optimization problem with proven complexity results and is also very hard to solve in practice. We design a branch-and-bound combinatorial optimization algorithm and test it on the problem of minimum 2-club partitioning

    Decomposition algorithms for detecting low-diameter clusters in graphs

    Get PDF
    Detecting low-diameter clusters in graphs is an effective graph-based data mining technique, which has been used to find cohesive subgraphs in a variety of graph models of data. Low pairwise distances within a cluster can facilitate fast communication or good reachability between vertices in the cluster. A k-club is a subset of vertices, which induces a subgraph of diameter at most k. For low values of the parameter k, this model offers a graph-theoretic relaxation of the clique model that formalizes the notion of a low-diameter cluster. The maximum k-club problem is to find a k-club with maximum cardinality in a given graph. The goals of this study are focused on developing decomposition and cutting plane methods for the maximum k-club problem for arbitrary k.Two compact integer programming formulations for the maximum k-club problem were presented by other researchers. These formulations are very effective integer programming approaches presently available to solve the maximum k-club problem for any given value of k. Using model decomposition techniques, we demonstrate how the fundamental optimization problem of finding a maximum size k-club can be solved optimally on large-scale benchmark instances. Our approach circumvents the use of complicated formulations in favor of a simple relaxation based on necessary conditions, combined with canonical hypercube cuts introduced by Balas and Jeroslow. Next, we demonstrate that by using a delayed constraint generation approach in a branch-and-cut algorithm, we can significantly speed-up the performance of an integer programming solver over the direct solution of the implementation of either formulation.Then, we study the problem of detecting large risk-averse 2-clubs in graphs subject to probabilistic edge failures. To achieve risk aversion, we first model the loss in 2-club property due to probabilistic edge failures as a function of the decision (chosen 2-club cluster) and randomness (graph structure). Then, we utilize the conditional value-at-risk of the loss for a given decision as a quantitative measure of risk, which is bounded in the stochastic optimization model. A sequential cutting plane method that solves a series of mixed integer linear programs is developed for solving this problem

    Polyhedral Combinatorics, Complexity & Algorithms for k-Clubs in Graphs

    Get PDF
    A k-club is a distance-based graph-theoretic generalization of clique, originally introduced to model cohesive subgroups in social network analysis. The k-clubs represent low diameter clusters in graphs and are suitable for various graph-based data mining applications. Unlike cliques, the k-club model is nonhereditary, meaning every subset of a k-club is not necessarily a k-club. This imposes significant challenges in developing theory and algorithms for optimization problems associated with k-clubs.We settle an open problem establishing the intractability of testing inclusion-wise maximality of k-clubs for fixed k>=2. This result is in contrast to polynomial-time verifiability of maximal cliques, and is a direct consequence of k-clubs' nonhereditary nature. A class of graphs for which this problem is polynomial-time solvable is also identified. We propose a distance coloring based upper-bounding scheme and a bounded enumeration based lower-bounding routine and employ them in a combinatorial branch-and-bound algorithm for finding a maximum k-club. Computational results on graphs with up to 200 vertices are also provided.The 2-club polytope of a graph is studied and a new family of facet inducing inequalities for this polytope is discovered. This family of facets strictly contains all known nontrivial facets of the 2-club polytope as special cases, and identifies previously unknown facets of this polytope. The separation complexity of these newly discovered facets is proved to be NP-complete and it is shown that the 2-club polytope of trees can be completely described by the collection of these facets along with the nonnegativity constraints.We also studied the maximum 2-club problem under uncertainty. Given a random graph subject to probabilistic edge failures, we are interested in finding a large "risk-averse" 2-club. Here, risk-aversion is achieved via modeling the loss in 2-club property due to edge failures, as random loss, which is a function of the decision variables and uncertain parameters. Conditional Value-at-Risk (CVaR) is used as a quantitative measure of risk that is constrained in the model. Benders' decomposition scheme is utilized to develop a new decomposition algorithm for solving the CVaR constrainedmaximum 2-club problem. A preliminary experiment is also conducted to compare the computational performance of the developed algorithm with our extension of an existing algorithm from the literature.Industrial Engineering & Managemen

    Lake Michigan Offshore Wind Assessment Project Final Report

    Get PDF

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    An Initial Framework Assessing the Safety of Complex Systems

    Get PDF
    Trabajo presentado en la Conference on Complex Systems, celebrada online del 7 al 11 de diciembre de 2020.Atmospheric blocking events, that is large-scale nearly stationary atmospheric pressure patterns, are often associated with extreme weather in the mid-latitudes, such as heat waves and cold spells which have significant consequences on ecosystems, human health and economy. The high impact of blocking events has motivated numerous studies. However, there is not yet a comprehensive theory explaining their onset, maintenance and decay and their numerical prediction remains a challenge. In recent years, a number of studies have successfully employed complex network descriptions of fluid transport to characterize dynamical patterns in geophysical flows. The aim of the current work is to investigate the potential of so called Lagrangian flow networks for the detection and perhaps forecasting of atmospheric blocking events. The network is constructed by associating nodes to regions of the atmosphere and establishing links based on the flux of material between these nodes during a given time interval. One can then use effective tools and metrics developed in the context of graph theory to explore the atmospheric flow properties. In particular, Ser-Giacomi et al. [1] showed how optimal paths in a Lagrangian flow network highlight distinctive circulation patterns associated with atmospheric blocking events. We extend these results by studying the behavior of selected network measures (such as degree, entropy and harmonic closeness centrality)at the onset of and during blocking situations, demonstrating their ability to trace the spatio-temporal characteristics of these events.This research was conducted as part of the CAFE (Climate Advanced Forecasting of sub-seasonal Extremes) Innovative Training Network which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813844

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    • …
    corecore