285 research outputs found

    Anomaly Detection Methods to Improve Supply Chain Data Quality and Operations

    Get PDF
    Supply chain operations drive the planning, manufacture, and distribution of billions of semiconductors a year, spanning thousands of products across many supply chain configurations. The customizations span from wafer technology to die stacking and chip feature enablement. Data quality drives efficiency in these processes and anomalies in data can be very disruptive, and at times, consequential. Developing preventative measures that automate the detection of anomalies before they reach downstream execution systems would result in significant efficiency gain for the organization. The purpose of this research is to identify an effective, actionable, and computationally efficient approach to highlight anomalies in a sparse and highly variable supply chain data structure. This research highlights the application of ensemble unsupervised learning algorithms for anomaly detection on supply chain demand data. The outlier detection algorithms explored include Angle-Based Outlier Detection, Isolation Forest, Local Outlier Factor and K-Nearest Neighbors. The application of an ensemble technique on unconstrained forecast signal, which is traditionally a consistent demand line, demonstrated a dramatic decrease in false positives. The application of the ensemble technique to the sales-order netted demand forecast, a signal that is irregular in structure, the algorithm identifies true anomalous observations relative to historical observations across time. The research team concluded that assessing an outlier is not limited to the most recent forecast’s observations but must be considered in the context of historical demand patterns across time

    Online Condition Monitoring of Electric Powertrains using Machine Learning and Data Fusion

    Get PDF
    Safe and reliable operations of industrial machines are highly prioritized in industry. Typical industrial machines are complex systems, including electric motors, gearboxes and loads. A fault in critical industrial machines may lead to catastrophic failures, service interruptions and productivity losses, thus condition monitoring systems are necessary in such machines. The conventional condition monitoring or fault diagnosis systems using signal processing, time and frequency domain analysis of vibration or current signals are widely used in industry, requiring expensive and professional fault analysis team. Further, the traditional diagnosis methods mainly focus on single components in steady-state operations. Under dynamic operating conditions, the measured quantities are non-stationary, thus those methods cannot provide reliable diagnosis results for complex gearbox based powertrains, especially in multiple fault contexts. In this dissertation, four main research topics or problems in condition monitoring of gearboxes and powertrains have been identified, and novel solutions are provided based on data-driven approach. The first research problem focuses on bearing fault diagnosis at early stages and dynamic working conditions. The second problem is to increase the robustness of gearbox mixed fault diagnosis under noise conditions. Mixed fault diagnosis in variable speeds and loads has been considered as third problem. Finally, the limitation of labelled training or historical failure data in industry is identified as the main challenge for implementing data-driven algorithms. To address mentioned problems, this study aims to propose data-driven fault diagnosis schemes based on order tracking, unsupervised and supervised machine learning, and data fusion. All the proposed fault diagnosis schemes are tested with experimental data, and key features of the proposed solutions are highlighted with comparative studies.publishedVersio
    • …
    corecore