1,941 research outputs found

    Detecting intention to grasp during reaching movements from EEG

    Get PDF
    Abstract—Brain-computer interfaces (BCI) have been shown to be a promising tool in rehabilitation and assistive scenarios. Within these contexts, brain signals can be decoded and used as commands for a robotic device, allowing to translate user’s intentions into motor actions in order to support the user’s impaired neuro-muscular system. Recently, it has been suggested that slow cortical potentials (SCPs), negative deflections in the electroencephalographic (EEG) signals peaking around one second before the initiation of movements, might be of interest because they offer an accurate time resolution for the provided feedback. Many state-of-the-art studies exploiting SCPs have focused on decoding intention of movements related to walking and arm reaching, but up to now few studies have focused on decoding the intention to grasp, which is of fundamental importance in upper-limb tasks. In this work, we present a technique that exploits EEG to decode grasping correlates during reaching movements. Results obtained with four subjects show the existence of SCPs prior to the execution of grasping movements and how they can be used to classify, with accuracy rates greater than 70% across all subjects, the intention to grasp. Using a sliding window approach, we have also demonstrated how this intention can be decoded on average around 400 ms before the grasp movements for two out of four subjects, and after the onset of grasp itself for the two other subjects

    Utilizing Deep Neural Networks for Brain–Computer Interface-Based Prosthesis Control

    Full text link
    Limb amputations affect a significant portion of the world’s population every year. The necessity for these operations can be associated with related health conditions or a traumatic event. Currently, prosthetic devices intended to alleviate the burden of amputation lack many of the premier features possessed by their biological counterparts. The foremost of these features are agility and tactile function. In an effort to address the former, researchers here investigate the fundamental connection between agile finger movement and brain signaling. In this study each subject was asked to move his or her right index finger in sync with a time-aligned finger movement demonstration while each movement was labeled and the subject’s brain waves were recorded via a single-channel electroencephalograph. This data was subsequently used to train and test a deep neural network in an effort to classify each subject’s intention to rest and intention to extend his or her right index finger. On average, the employed model yielded an accuracy of 63.3%, where the most predictable subject’s movements were classified with an accuracy of 70.5%

    Detecting and classifying three different hand movement types through electroencephalography recordings for neurorehabilitation

    Get PDF
    Brain–computer interfaces can be used for motor substitution and recovery; therefore, detection and classification of movement intention are crucial for optimal control. In this study, palmar, lateral and pinch grasps were differentiated from the idle state and classified from single-trial EEG using only information prior to the movement onset. Fourteen healthy subjects performed the three grasps 100 times, while EEG was recorded from 25 electrodes. Temporal and spectral features were extracted from each electrode, and feature reduction was performed using sequential forward selection (SFS) and principal component analysis (PCA). The detection problem was investigated as the ability to discriminate between movement preparation and the idle state. Furthermore, all task pairs and the three movements together were classified. The best detection performance across movements (79 ± 8 %) was obtained by combining temporal and spectral features. The best movement–movement discrimination was obtained using spectral features: 76 ± 9 % (2-class) and 63 ± 10 % (3-class). For movement detection and discrimination, the performance was similar across grasp types and task pairs; SFS outperformed PCA. The results show it is feasible to detect different grasps and classify the distinct movements using only information prior to the movement onset, which may enable brain–computer interface-based neurorehabilitation of upper limb function through Hebbian learning mechanisms

    Electroencephalographic recording of the movement-related cortical potential in ecologically-valid movements:A scoping review

    Get PDF
    The movement-related cortical potential (MRCP) is a brain signal that can be recorded using surface electroencephalography (EEG) and represents the cortical processes involved in movement preparation. The MRCP has been widely researched in simple, single-joint movements, however, these movements often lack ecological validity. Ecological validity refers to the generalizability of the findings to real-world situations, such as neurological rehabilitation. This scoping review aimed to synthesize the research evidence investigating the MRCP in ecologically valid movement tasks. A search of six electronic databases identified 102 studies that investigated the MRCP during multi-joint movements; 59 of these studies investigated ecologically valid movement tasks and were included in the review. The included studies investigated 15 different movement tasks that were applicable to everyday situations, but these were largely carried out in healthy populations. The synthesized findings suggest that the recording and analysis of MRCP signals is possible in ecologically valid movements, however the characteristics of the signal appear to vary across different movement tasks (i.e., those with greater complexity, increased cognitive load, or a secondary motor task) and different populations (i.e., expert performers, people with Parkinson’s Disease, and older adults). The scarcity of research in clinical populations highlights the need for further research in people with neurological and age-related conditions to progress our understanding of the MRCPs characteristics and to determine its potential as a measure of neurological recovery and intervention efficacy. MRCP-based neuromodulatory interventions applied during ecologically valid movements were only represented in one study in this review as these have been largely delivered during simple joint movements. No studies were identified that used ecologically valid movements to control BCI-driven external devices; this may reflect the technical challenges associated with accurately classifying functional movements from MRCPs. Future research investigating MRCP-based interventions should use movement tasks that are functionally relevant to everyday situations. This will facilitate the application of this knowledge into the rehabilitation setting

    EEG Classification of Different Imaginary Movements within the Same Limb

    Get PDF
    The task of discriminating the motor imagery of different movements within the same limb using electroencephalography (EEG) signals is challenging because these imaginary movements have close spatial representations on the motor cortex area. There is, however, a pressing need to succeed in this task. The reason is that the ability to classify different same-limb imaginary movements could increase the number of control dimensions of a brain-computer interface (BCI). In this paper, we propose a 3-class BCI system that discriminates EEG signals corresponding to rest, imaginary grasp movements, and imaginary elbow movements. Besides, the differences between simple motor imagery and goal-oriented motor imagery in terms of their topographical distributions and classification accuracies are also being investigated. To the best of our knowledge, both problems have not been explored in the literature. Based on the EEG data recorded from 12 able-bodied individuals, we have demonstrated that same-limb motor imagery classification is possible. For the binary classification of imaginary grasp and elbow (goal-oriented) movements, the average accuracy achieved is 66.9%. For the 3-class problem of discriminating rest against imaginary grasp and elbow movements, the average classification accuracy achieved is 60.7%, which is greater than the random classification accuracy of 33.3%. Our results also show that goal-oriented imaginary elbow movements lead to a better classification performance compared to simple imaginary elbow movements. This proposed BCI system could potentially be used in controlling a robotic rehabilitation system, which can assist stroke patients in performing task-specific exercises

    Development of a Unique Whole-Brain Model for Upper Extremity Neuroprosthetic Control

    Get PDF
    Neuroprostheses are at the forefront of upper extremity function restoration. However, contemporary controllers of these neuroprostheses do not adequately address the natural brain strategies related to planning, execution and mediation of upper extremity movements. These lead to restrictions in providing complete and lasting restoration of function. This dissertation develops a novel whole-brain model of neuronal activation with the goal of providing a robust platform for an improved upper extremity neuroprosthetic controller. Experiments (N=36 total) used goal-oriented upper extremity movements with real-world objects in an MRI scanner while measuring brain activation during functional magnetic resonance imaging (fMRI). The resulting data was used to understand neuromotor strategies using brain anatomical and temporal activation patterns. The study\u27s fMRI paradigm is unique and the use of goal-oriented movements and real-world objects are crucial to providing accurate information about motor task strategy and cortical representation of reaching and grasping. Results are used to develop a novel whole-brain model using a machine learning algorithm. When tested on human subject data, it was determined that the model was able to accurately distinguish functional motor tasks with no prior knowledge. The proof of concept model created in this work should lead to improved prostheses for the treatment of chronic upper extremity physical dysfunction

    Understanding motor planning and action recognition of pantomimed grasps

    Get PDF
    The ability to manipulate objects with considerable skill is one of the defining features of primates. In both humans and non-human primates, grasping is typically directed toward a visible object and results in contact with the object. Humans - and perhaps some other species - are also capable of grasping imaginary objects in a pantomimed prehension. Pantomimed grasps are well studied, both for theoretical and clinical interests, to explore the double function of human hands, as instrumental as well as communicative devices. The present thesis aims to investigate both aspects of pantomimed grasps in terms of motor control, action understanding and neural activation during action observation. The first experiment explored whether the way pantomimed grasps are executed can convey weight information of imaginary objects. The second experiment tested whether observers can exploit movement kinematics to discriminate between real (i.e., movements directed toward a physically present object) and pantomimed grasps. The third study investigated if perception of real and pantomimed grasps might automatically drive object representation. The fourth experiment inspected whether having a motor expertise on pantomimed grasp execution impacts pantomimed grasp processing. The fifth experiment shed new insights on the neural underpinnings of action understanding mechanisms by exploring electroencephalography (EEG) signals during real and pantomimed grasp observation

    Classification of hand grasp kinetics and types using movement-related cortical potentials and EEG rhythms

    Get PDF
    Detection of single-trial movement intentions from EEG is paramount for brain-computer interfacing in neurorehabilitation. These movement intentions contain task-related information and if this is decoded, the neurorehabilitation could potentially be optimized. The aim of this study was to classify single-trial movement intentions associated with two levels of force and speed and three different grasp types using EEG rhythms and components of the movement-related cortical potential (MRCP) as features. The feature importance was used to estimate encoding of discriminative information. Two data sets were used. 29 healthy subjects executed and imagined different hand movements, while EEG was recorded over the contralateral sensorimotor cortex. The following features were extracted: delta, theta, mu/alpha, beta, and gamma rhythms, readiness potential, negative slope, and motor potential of the MRCP. Sequential forward selection was performed, and classification was performed using linear discriminant analysis and support vector machines. Limited classification accuracies were obtained from the EEG rhythms and MRCP-components: 0.48±0.05 (grasp types), 0.41±0.07 (kinetic profiles, motor execution), and 0.39±0.08 (kinetic profiles, motor imagination). Delta activity contributed the most but all features provided discriminative information. These findings suggest that information from the entire EEG spectrum is needed to discriminate between task-related parameters from single-trial movement intentions
    • …
    corecore