87 research outputs found

    XSS-FP: Browser Fingerprinting using HTML Parser Quirks

    Get PDF
    There are many scenarios in which inferring the type of a client browser is desirable, for instance to fight against session stealing. This is known as browser fingerprinting. This paper presents and evaluates a novel fingerprinting technique to determine the exact nature (browser type and version, eg Firefox 15) of a web-browser, exploiting HTML parser quirks exercised through XSS. Our experiments show that the exact version of a web browser can be determined with 71% of accuracy, and that only 6 tests are sufficient to quickly determine the exact family a web browser belongs to

    ATTACKS AND COUNTERMEASURES FOR WEBVIEW ON MOBILE SYSTEMS

    Get PDF
    ABSTRACT All the mainstream mobile operating systems provide a web container, called ``WebView\u27\u27. This Web-based interface can be included as part of the mobile application to retrieve and display web contents from remote servers. WebView not only provides the same functionalities as web browser, more importantly, it enables rich interactions between mobile apps and webpages loaded inside WebView. Through its APIs, WebView enables the two-way interaction. However, the design of WebView changes the landscape of the Web, especially from the security perspective. This dissertation conducts a comprehensive and systematic study of WebView\u27s impact on web security, with a particular focus on identifying its fundamental causes. This dissertation discovers multiple attacks on WebView, and proposes new protection models to enhance the security of WebView. The design principles of these models are also described as well as the prototype implementation in Android platform. Evaluations are used to demonstrate the effectiveness and performance of these protection models

    Novel Attacks and Defenses in the Userland of Android

    Get PDF
    In the last decade, mobile devices have spread rapidly, becoming more and more part of our everyday lives; this is due to their feature-richness, mobility, and affordable price. At the time of writing, Android is the leader of the market among operating systems, with a share of 76% and two and a half billion active Android devices around the world. Given that such small devices contain a massive amount of our private and sensitive information, the economic interests in the mobile ecosystem skyrocketed. For this reason, not only legitimate apps running on mobile environments have increased dramatically, but also malicious apps have also been on a steady rise. On the one hand, developers of mobile operating systems learned from security mistakes of the past, and they made significant strides in blocking those threats right from the start. On the other hand, these high-security levels did not deter attackers. In this thesis, I present my research contribution about the most meaningful attack and defense scenarios in the userland of the modern Android operating system. I have emphasized "userland'' because attack and defense solutions presented in this thesis are executing in the userspace of the operating system, due to the fact that Android is slightly different from traditional operating systems. After the necessary technical background, I show my solution, RmPerm, in order to enable Android users to better protect their privacy by selectively removing permissions from any app on any Android version. This operation does not require any modification to the underlying operating system because we repack the original application. Then, using again repackaging, I have developed Obfuscapk; it is a black-box obfuscation tool that can work with every Android app and offers a free solution with advanced state of the art obfuscation techniques -- especially the ones used by malware authors. Subsequently, I present a machine learning-based technique that focuses on the identification of malware in resource-constrained devices such as Android smartphones. This technique has a very low resource footprint and does not rely on resources outside the protected device. Afterward, I show how it is possible to mount a phishing attack -- the historically preferred attack vector -- by exploiting two recent Android features, initially introduced in the name of convenience. Although a technical solution to this problem certainly exists, it is not solvable from a single entity, and there is the need for a push from the entire community. But sometimes, even though there exists a solution to a well-known vulnerability, developers do not take proper precautions. In the end, I discuss the Frame Confusion vulnerability; it is often present in hybrid apps, and it was discovered some years ago, but I show how it is still widespread. I proposed a methodology, implemented in the FCDroid tool, for systematically detecting the Frame Confusion vulnerability in hybrid Android apps. The results of an extensive analysis carried out through FCDroid on a set of the most downloaded apps from the Google Play Store prove that 6.63% (i.e., 1637/24675) of hybrid apps are potentially vulnerable to Frame Confusion. The impact of such results on the Android users' community is estimated in 250.000.000 installations of vulnerable apps
    • …
    corecore