15 research outputs found

    The detection of malingering in whiplash-related injuries: a targeted literature review of the available strategies

    Full text link
    [EN] Objective The present review is intended to provide an up-to-date overview of the strategies available to detect malingered symptoms following whiplash. Whiplash-associated disorders (WADs) represent the most common traffic injuries, having a major impact on economic and healthcare systems worldwide. Heterogeneous symptoms that may arise following whiplash injuries are difficult to objectify and are normally determined based on self-reported complaints. These elements, together with the litigation context, make fraudulent claims particularly likely. Crucially, at present, there is no clear evidence of the instruments available to detect malingered WADs. Methods We conducted a targeted literature review of the methodologies adopted to detect malingered WADs. Relevant studies were identified via Medline (PubMed) and Scopus databases published up to September 2020. Results Twenty-two methodologies are included in the review, grouped into biomechanical techniques, clinical tools applied to forensic settings, and cognitive-based lie detection techniques. Strengths and weaknesses of each methodology are presented, and future directions are discussed. Conclusions Despite the variety of techniques that have been developed to identify malingering in forensic contexts, the present work highlights the current lack of rigorous methodologies for the assessment of WADs that take into account both the heterogeneous nature of the syndrome and the possibility of malingering. We conclude that it is pivotal to promote awareness about the presence of malingering in whiplash cases and highlight the need for novel, high-quality research in this field, with the potential to contribute to the development of standardised procedures for the evaluation of WADs and the detection of malingering.Open access funding provided by Universita degli Studi di Padova within the CRUI-CARE Agreement. This work was supported by funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 777090.Monaro, M.; Baydal Bertomeu, JM.; Zecchinato, F.; Fietta, V.; Sartori, G.; De Rosario MartĂ­nez, H. (2021). The detection of malingering in whiplash-related injuries: a targeted literature review of the available strategies. International Journal of Legal Medicine. 135(5):2017-2032. https://doi.org/10.1007/s00414-021-02589-wS20172032135

    A model to differentiate WAD patients and people with abnormal pain behaviour based on biomechanical and self-reported tests

    Get PDF
    [EN] The prevalence of malingering among individuals presenting whiplash-related symptoms is significant and leads to a huge economic loss due to fraudulent injury claims. Various strategies have been proposed to detect malingering and symptoms exaggeration. However, most of them have been not consistently validated and tested to determine their accuracy in detecting feigned whiplash. This study merges two different approaches to detect whiplash malingering (the mechanical approach and the qualitative analysis of the symptomatology) to obtain a malingering detection model based on a wider range of indices, both biomechanical and self-reported. A sample of 46 malingerers and 59 genuine clinical patients was tested using a kinematic test and a self-report questionnaire asking about the presence of rare and impossible symptoms. The collected measures were used to train and validate a linear discriminant analysis (LDA) classification model. Results showed that malingerers were discriminated from genuine clinical patients based on a greater proportion of rare symptoms vs. possible self-reported symptoms and slower but more repeatable neck motions in the biomechanical test. The fivefold cross-validation of the LDA model yielded an area under the curve (AUC) of 0.84, with a sensitivity of 77.8% and a specificity of 84.7%.Open access funding provided by Universita degli Studi di Padova within the CRUI-CARE Agreement. This work was supported by funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 777090Monaro, M.; De Rosario MartĂ­nez, H.; Baydal Bertomeu, JM.; Bernal-Lafuente, M.; Masiero, S.; MacĂ­a-Calvo, M.; Cantele, F.... (2021). A model to differentiate WAD patients and people with abnormal pain behaviour based on Biomechanical and self-reported tests. International Journal of Legal Medicine. 135(4):1637-1646. https://doi.org/10.1007/s00414-021-02572-5163716461354Cassidy JD, Leth-Petersen S, Rotger GP (2018) What happens when compensation for whiplash claims is made more generous? J Risk Insur 85:635–662Previtera, AM (2004) Il colpo di frusta cervicale. Diagnosi, biomeccanica e trattamento. Grafica MA. RO, Copiano (PV)Noll-Hussong M (2017) Whiplash Syndrome Reloaded: Digital Echoes of Whiplash Syndrome in the European Internet Search Engine Context. JMIR Public Heal Surveill 3:e15. https://doi.org/10.2196/publichealth.7054Janitzek T (2007) Reining in Whiplash: Better Protection for Europe’s Car Occupants. Corporate Authors: European Transport Safety CouncilSpitzer WO, Skovron ML, Salmi LR, Cassidy JD, Duranceau J, Suissa S, Zeiss E (1995) Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders: redefining “whiplash” and its management., Spine (Phila. Pa. 1976). 20 1S-73S. http://www.ncbi.nlm.nih.gov/pubmed/7604354Binder A (2007) The diagnosis and treatment of nonspecific neck pain and whiplash. Eura Medicophys 43:79Ferrara SD, Ananian V, Baccino E, Banczerowski P, Bordignon D, Boscolo-Berto R, Domenici R, Quevedo JG, Graw M, Hell W (2016) Whiplash-Associated Disorders. Int J Legal Med 130:13–22Hartling L, Brison RJ, Ardern C, Pickett W (1976) Prognostic value of the Quebec classification of whiplash-associated disorders, Spine (Phila. Pa 26(2001):36–41Broos J, Meijer R (2016) Simulation Method for Whiplash Injury Prediction Using an Active Human Model, in: Proc. IRCOBI Conf.Cassidy JD, Carroll LJ, CĂŽtĂ© P, Lemstra M, Berglund A, Nygren Å (2000) Effect of Eliminating Compensation for Pain and Suffering on the Outcome of Insurance Claims for Whiplash Injury. N Engl J Med 342:1179–1186. https://doi.org/10.1056/NEJM200004203421606Pearce JMS (1999) A critical appraisal of the chronic whiplash syndrome. J Neurol Neurosurg Psychiatry 66(3):273–276. https://doi.org/10.1136/jnnp.66.3.273Schmand B, Lindeboom J, Schagen S, Heijt R, Koene T, Hamburger HL (1998) Cognitive complaints in patients after whiplash injury: the impact of malingering. J Neurol Neurosurg Psychiatry 64:339–343Larrabee GJ (1990) Cautions in the use of neuropsychological evaluation in legal settings. Neuropsychology 4:239–247. https://doi.org/10.1037/0894-4105.4.4.239Cornell DG, Hawk GL (1989) Clinical presentation of malingerers diagnosed by experienced forensic psychologists. Law Hum Behav 13:375–383. https://doi.org/10.1007/BF01056409Berry DTR, Baer RA, Harris MJ (1991) Detection of malingering on the MMPI: A meta-analysis. Clin Psychol Rev 11:585–598. https://doi.org/10.1016/0272-7358(91)90005-FRogers R, Correa AA (2008) Determinations of Malingering: Evolution from Case-Based Methods to Detection Strategies, Psychiatry. Psychol Law 15:213–223. https://doi.org/10.1080/13218710802014501Rogers R, Shuman DW (2005) Malingering and deception in criminal evaluations, Fundam. In: Rogers R, Shuman DW (eds) Fundamentals of forensic practice: mental health and criminal law, pp 21–55. https://doi.org/10.1007/b106925Smith GP, Burger GK (1997) Detection of malingering: validation of the Structured Inventory of Malingered Symptomatology (SIMS). J Am Acad Psychiatry Law Online 25:183–189Sartori G, Forti S, Birbaumer N, Flor H (2003) A brief and unobtrusive instrument to detect simulation and exaggeration in patients with whiplash syndrome. Neurosci Lett 342:53–56. https://doi.org/10.1016/S0304-3940(03)00233-7Sobel JB, Sollenberger P, Robinson R, Polatin PB, Gatchel RJ (2000) Cervical nonorganic signs: a new clinical tool to assess abnormal illness behavior in neck pain patients: a pilot study. Arch Phys Med Rehabil 81:170–175Murphy DR, Hurwitz EL (2011) Application of a diagnosis-based clinical decision guide in patients with neck pain. Chiropr Man Therap 19:19. https://doi.org/10.1186/2045-709X-19-19Mendelson G, Mendelson D (2004) Malingering pain in the medicolegal context. Clin J Pain 20:423–432Fishbain DA, Cole B, Cutler RB, Lewis J, Rosomoff HL, Rosomoff RS (2003) A structured evidence-based review on the meaning of nonorganic physical signs: Waddell signs. Pain Med 4:141–181Capilla RamĂ­rez P, GonzĂĄlez Ordi H (2009) A Protocol for detection of malingered pain symptomatology in clinical practice: case studies, TRAUMA-SPAIN. 20:255–263Capilla RamĂ­rez P, GonzĂĄlez Ordi H (2012) SimulaciĂłnenpatologĂ­a dolorosa crĂłnica del raquis cervical (cervicalgia/esguince cervical). Rev. Española Med. Leg. 38:76–84. https://doi.org/10.1016/j.reml.2012.03.003Vernon H, Tran S, Soave D, Moreton J (2010) Simulated malingering in the testing of cervical muscle isometric strength. J Back Musculoskelet Rehabil 23:117–127Endo K, Suzuki H, Yamamoto K (1976) Consciously postural sway and cervical vertigo after whiplash injury, Spine (Phila. Pa 33(2008):E539–E542Baydal-Bertomeu JM, Page ÁF, Belda-Lois JM, Garrido-JaĂ©n D, Prat JM (2011) Neck motion patterns in whiplash-associated disorders: Quantifying variability and spontaneity of movement. Clin Biomech 26:29–34. https://doi.org/10.1016/j.clinbiomech.2010.08.008Baydal-Bertomeu J-M, GarcĂ­a-Mas M-A, Poveda R, Belda J-M, Garrido-JaĂ©n D, Vivas M-J, Vera P, LĂłpez J (2007) Determination of simulation patterns of cervical pain from kinematical parameters of movement. Challenges Assist Technol AAATE 07(20):429–433Oddsdottir GL, Kristjansson E, Gislason MK (2015) Sincerity of effort versus feigned movement control of the cervical spine in patients with whiplash-associated disorders and asymptomatic persons: a case–control study. Physiother Theory Pract 31:403–409G. Sartori, A. Zangrossi, G. OrrĂč, M. Monaro 2017 Detection of Malingering in Psychic Damage Ascertainment, in: P5 Med. Justice, Springer, Cham, pp. 330–341. https://doi.org/10.1007/978-3-319-67092-8_21Vrij A, Fisher R, Mann S, Leal S (2008) A cognitive load approach to lie detection. J Investig Psychol Offender Profiling 5:39–43S Agosta G Sartori 2013 The autobiographical IAT: a review Front Psychol 4. https://doi.org/10.3389/fpsyg.2013.00519Sartori G, Agosta S, Gnoato F (2007) High accuracy detection of malingered whiplash syndrome. International Whiplash Trauma Congress, Miami, FLS Zago E Piacquadio M Monaro G OrrĂč E Sampaolo T Difonzo A Toncini E Heinzl 2019The Detection of Malingered Amnesia: An Approach Involving Multiple Strategies in a Mock CrimeFront Psychiatry 10. https://doi.org/10.3389/fpsyt.2019.00424G. Sartori, A. Zangrossi, M. Monaro, Deception Detection With Behavioral Methods, in: J.P. Rosenfeld (Ed.), Detect. Concealed Inf. Decept., Elsevier, 2018: pp. 215–241. https://doi.org/10.1016/B978-0-12-812729-2.00010-0De Rosario H, Vivas MJ, Sinovas MI, Page Á (2018) Relationship between neck motion and self-reported pain in patients with whiplash associated disorders during the acute phase. Musculoskelet Sci Pract 38:23–29. https://doi.org/10.1016/j.msksp.2018.09.004Landis JR, Koch GG (1977) The Measurement of Observer Agreement for Categorical Data. Biometrics 33:159. https://doi.org/10.2307/2529310Hosmer DW, Lemeshow S (2000) Applied Logistic Regression, John Wiley & Sons Inc, Hoboken, NJ. USA. https://doi.org/10.1002/0471722146H. De Rosario, phia: Post-Hoc Interaction Analysis, (2013). https://cran.r-project.org/web/packages/phia/index.html. Accessed 17 Sept 2020R Core Team (2020) R: a language and environment for statistical computing. http://www.r-project.org/. Accessed 17 Sept 2020Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21:3940–3941. https://doi.org/10.1093/bioinformatics/bti623W.N. Venables, B.D. Ripley, Modern Applied Statistics with S, Fourth, Springer, New York, 2002. http://www.stats.ox.ac.uk/pub/MASS4/M. Gamer, J. Lemon, I. Fellows, P. Singh, Various Coefficients of Interrater Reliability and Agreement, (2019). https://cran.r-project.org/package=irr. Accessed 17 Sept 2020M Monaro A Toncini S Ferracuti G Tessari MG Vaccaro P Fazio De G Pigato T Meneghel C Scarpazza G Sartori 2018The Detection of Malingering: A New Tool to Identify Made-Up Depression Front Psychiatry 9. https://doi.org/10.3389/fpsyt.2018.00249Ferrari R, Kwan O (2001) The no-fault flavor of disability syndromes. Med Hypotheses 56:77–84. https://doi.org/10.1054/mehy.2000.1115Fishbain DA (1994) Secondary gain concept. APS J 3:264–273. https://doi.org/10.1016/S1058-9139(05)80274-8Fishbain DA, Cutler R, Rosomoff HL, Rosomoff RS (1999) Chronic Pain Disability Exaggeration/Malingering and Submaximal Effort Research. Clin J Pain 15:244–274. https://doi.org/10.1097/00002508-199912000-00002Gatchel RJ, Adams L, Polatin PB, Kishino ND (2002) Secondary loss and pain-associated disability: theoretical overview and treatment implications. J Occup Rehabil 12:99–110. https://doi.org/10.1023/A:101501261448

    Is a depth camera in agreement with an electromagnetic tracking device when measuring head position?

    Get PDF
    Introduction: Clinicians typically observe and describe abnormal head postures (AHPs) and may also measure them. Depth cameras have been suggested as a reliable measurement device for measuring head position using face-tracking technology. This study compared a depth camera (Microsoft Kinect) to a gold standard electromagnetic tracking system (Polhemus device) to measure head position. Method: Twenty healthy volunteers (mean age 21 years) had their head position simultaneously recorded using the depth camera (Kinect) and the electromagnetic tracking system (Polhemus). Participants were asked to make 30-degree head movements into chin up, chin down, head turn and head tilt positions. The head movement made and the stability of the head at each position were recorded and analysed. Results: Compared to the electromagnetic tracking system (Polhemus), the depth camera (Kinect) always measured a smaller head movement. Measurements with the two devices were not statistically significantly different for turn right (P = 0.3955, p > 0.05), turn left (P = 0.4749, p > 0.05), tilt right (P = 0.7086, p > 0.05) and tilt left (P = 0.4091, p > 0.05) head movements. However, the smaller depth camera measurement of chin up and chin down head movements were statistically significant, chin up (P = 0.0001, p < 0.01) and chin down (P = 0.0005, p < 0.001). At each eccentric position, the depth camera (Kinect) recordings were more variable than the electromagnetic tracking system (Polhemus). Conclusions: Compared to the electromagnetic tracking system (Polhemus), the depth camera (Kinect) was comparable for measuring head turns and tilts but was less accurate at measuring chin up and chin down head positions. Further research is needed before the depth cameras are considered for clinical recordings of head position

    A New Method for Preliminary Identification of Gene Regulatory Networks from Gene Microarray Cancer Data Using Ridge Partial Least Squares with Recursive Feature Elimination and Novel Brier and Occurrence Probability Measures

    Get PDF
    published_or_final_versio

    Subject-adjustable computational modelling for the analysis of human head–neck motions in rear-end impacts

    Get PDF
    Whiplash Associated Disorder (WAD) is a general term used to describe minor injuries to the neck, mostly as a result of a rear-end motor vehicle collision. Although the injury is defined as minor, the long-term symptoms such as neck pain, stiffness, headache, or concentration difficulties, result in high costs to the economy, healthcare services and individuals. Consequently, there has been significant amount of research undertaken to understand and prevent WAD, covering experimental and computational studies. However, whiplash injuries are difficult to detect since diagnostic tools such as X-rays, CT (Computed Tomography) scans or MRI (Magnetic Resonance Imaging) are not suitable to identify the location or the extent of the injury. Also, the injury mechanisms are not fully understood; hence mathematical criteria are used as surrogates to estimate the likelihood of injury. In the present research, a biofidelic, subject-adjustable head-and-neck model (i.e. the model is adjustable for individual subject characteristics) has been developed for rear-end impact whiplash analysis. Existing literature is used to develop the overall research framework (methodology), which has three main objectives: first to explain the importance of personalised protection investigations, second to evaluate the suitability of existing data for a subject-adjustable model, and third to define the required steps in the design of such a model.To generate the geometry of the model, previously published cascading equations capable of predicting the main vertebrae dimensions based on the subject characteristics age, gender and height are used. Also, in line with previous work, seven cervical neck segments represent the seven cervical vertebrae and all surrounding cervical tissues properties. The mass and moment of inertia properties of each segment are lumped into each respective segment. The intervertebral behaviour for two adjacent segments is described by non-linear spring-damper functions, which change according to subject specific characteristics. The model is driven by specification of the first thoracic vertebra (T1) motion.The model combines existing data and methods from different sources, utilising available data in the public domain. New procedures and techniques are incorporated to create a homogeneous model, which is adaptable to a wide range of subjects. The developed computational model is not simply a linear scaling of a master-model to other dimensions, but rather uses prediction equations to create the desired anthropometric model. The anthropometric model predictions for body part dimensions and inertia properties are successfully verified using anthropometric surveys available in the literature.Using lumped and non-linear stiffness and damping equations for the intervertebral joints, and without modelling separate muscles, the model is dynamically calibrated for different experimental sled test data available in the open domain. The joint equations and their coefficients are derived based on published joint data measurements on Post Mortem Human Subjects (PMHS); a scaling of these coefficients is applied to match the overall head-and-neck kinematics of the computational model to the experimental sled test kinematics. For each experimental study, the global head kinematics of the model was calibrated successfully to mimic the head kinematics.The model has been modelled to represent subjects with different anthropometric characteristics, involving a novel relationship between intervertebral joint coefficients and anthropometric subject specifications. The observed effect of each change of anthropometric subject characteristic is evaluated independently using time-history diagrams; then the observed effect of multiple changes of anthropometric subject characteristics is assessed using multi-dimensional response surfaces for the response’s highest magnitude.The analysis of the proposed model has revealed that existing work involving the use of lumped parameter models is not as robust as claimed. This is because existing work has always been evaluated using a low number of validation graphs, i.e. using only the graphs which gave good validation results. The proposed model has been comprehensively evaluated and its limitations are addressed. The developed model had to merge different studies (different ethnical backgrounds, different subject types, etc.) together to create an adjustable model; this is because of the limited available data. The final model is the most homogeneous model currently possible. In addition, there is also limited relevant experimental data for full validation of the model, which is not ideal. Nevertheless, reliable results for the comparison of global head kinematics compared with several experimental sled test studies have been obtained for the average male subject model. Also, using the proposed model the dynamic effects resulting from anthropometric subject differences have been evaluated; these effects are almost perfectly linear relationships for each subject characteristic change. Potential applications for the developed model are the injury assessment based on mathematical whiplash injury criteria, head-restraint optimisation to minimise injury risk and the improvement of neck biofidelity in anthropometric test devices.</div

    Data science for tax administration

    Get PDF
    In this PhD-thesis several new and existing data science application are described that are particularly focused on applications for tax administrations. The thesis contains a chapter on the managerial side of analytics with a balanced overview of the pros and cons of applying analytics within taxpayer supervision. Another topic is (tax) fraud detection with unsupervised anomaly detection techniques. Here a new type of outliers is described (singular outliers) and an algorithm is provided for finding them. Attention is also paid to improving risk selection models. It is noted that most current algorithms cannot treat interactions of categorical variables with many levels very well. An extension of logistic regression is provided that uses Factorization Machines, which resulted in a ten percent improvement in precision. A fourth topic is statistical testing on similar treatment of similar cases. A contribution is made by providing an algorithm to statistically test on similar treatment based on process logs. The thesis contains further a benchmark study of different anomaly detection algorithms. Finally HR Analytics, Reinforcement Learning and applications of fuzzy sets are shortly described. Algorithms and the Foundations of Software technolog

    TOWARDS A HOLISTIC RISK MODEL FOR SAFEGUARDING THE PHARMACEUTICAL SUPPLY CHAIN: CAPTURING THE HUMAN-INDUCED RISK TO DRUG QUALITY

    Get PDF
    Counterfeit, adulterated, and misbranded medicines in the pharmaceutical supply chain (PSC) are a critical problem. Regulators charged with safeguarding the supply chain are facing shrinking resources for inspections while concurrently facing increasing demands posed by new drug products being manufactured at more sites in the US and abroad. To mitigate risk, the University of Kentucky (UK) Central Pharmacy Drug Quality Study (DQS) tests injectable drugs dispensed within the UK hospital. Using FT-NIR spectrometry coupled with machine learning techniques the team identifies and flags potentially contaminated drugs for further testing and possible removal from the pharmacy. Teams like the DQS are always working with limited equipment, time, and staffing resources. Scanning every vial immediately before use is infeasible and drugs must be prioritized for analysis. A risk scoring system coupled with batch sampling techniques is currently used in the DQS. However, a risk scoring system only allows the team to know about the risks to the PSC today. It doesn’t let us predict what the risks will be in the future. To begin bridging this gap in predictive modeling capabilities the authors assert that models must incorporate the human element. A sister project to the DQS, the Drug Quality Game (DGC), enables humans and all of their unpredictability to be inserted into a virtual PSC. The DQG approach was adopted as a means of capturing human creativity, imagination, and problem-solving skills. Current methods of prioritizing drug scans rely heavily on drug cost, sole-source status, warning letters, equipment and material specifications. However, humans, not machines, commit fraud. Given that even one defective drug product could have catastrophic consequences this project will improve risk-based modeling by equipping future models to identify and incorporate human-induced risks, expanding the overall landscape of risk-based modeling. This exploratory study tested the following hypotheses (1) a useful game system able to simulate real-life humans and their actions in a pharmaceutical manufacturing process can be designed and deployed, (2) there are variables in the game that are predictive of human-induced risks to the PSC, and (3) the game can identify ways in which bad actors can “game the system” (GTS) to produce counterfeit, adulterated, and misbranded drugs. A commercial-off-the-shelf (COTS) game, BigPharma, was used as the basis of a game system able to simulate the human subjects and their actions in a pharmaceutical manufacturing process. BigPharma was selected as it provides a low-cost, time-efficient virtual environment that captures the major elements of a pharmaceutical business- research, marketing, and manufacturing/processing. Running Big Pharma with a Python shell enables researchers to implement specific GxP-related tasks (Good x Practice, where x=Manufacturing, Clinical, Research, etc.) not provided in the COTS BigPharma game. Results from players\u27 interaction with the Python shell/Big Pharma environment suggest that the game can identify both variables predictive of human-induced risks to the PSC and ways in which bad actors may GTS. For example, company profitability emerged as one variable predictive of successful GTS. Player\u27s unethical in-game techniques matched well with observations seen within the DQS

    Scientific, Technical, and Forensic Evidence

    Get PDF
    Materials from the conference on Scientific, Technical, and Forensic Evidence held by UK/CLE in February 2002

    Skyler and Bliss

    Get PDF
    Hong Kong remains the backdrop to the science fiction movies of my youth. The city reminds me of my former training in the financial sector. It is a city in which I could have succeeded in finance, but as far as art goes it is a young city, and I am a young artist. A frustration emerges; much like the mould, the artist also had to develop new skills by killing off his former desires and manipulating technology. My new series entitled HONG KONG surface project shows a new direction in my artistic research in which my technique becomes ever simpler, reducing the traces of pixelation until objects appear almost as they were found and photographed. Skyler and Bliss presents tectonic plates based on satellite images of the Arctic. Working in a hot and humid Hong Kong where mushrooms grow ferociously, a city artificially refrigerated by climate control, this series provides a conceptual image of a imaginary typographic map for survival. (Laurent Segretier
    corecore