3,566 research outputs found

    These are not the k-mers you are looking for: efficient online k-mer counting using a probabilistic data structure

    Full text link
    K-mer abundance analysis is widely used for many purposes in nucleotide sequence analysis, including data preprocessing for de novo assembly, repeat detection, and sequencing coverage estimation. We present the khmer software package for fast and memory efficient online counting of k-mers in sequencing data sets. Unlike previous methods based on data structures such as hash tables, suffix arrays, and trie structures, khmer relies entirely on a simple probabilistic data structure, a Count-Min Sketch. The Count-Min Sketch permits online updating and retrieval of k-mer counts in memory which is necessary to support online k-mer analysis algorithms. On sparse data sets this data structure is considerably more memory efficient than any exact data structure. In exchange, the use of a Count-Min Sketch introduces a systematic overcount for k-mers; moreover, only the counts, and not the k-mers, are stored. Here we analyze the speed, the memory usage, and the miscount rate of khmer for generating k-mer frequency distributions and retrieving k-mer counts for individual k-mers. We also compare the performance of khmer to several other k-mer counting packages, including Tallymer, Jellyfish, BFCounter, DSK, KMC, Turtle and KAnalyze. Finally, we examine the effectiveness of profiling sequencing error, k-mer abundance trimming, and digital normalization of reads in the context of high khmer false positive rates. khmer is implemented in C++ wrapped in a Python interface, offers a tested and robust API, and is freely available under the BSD license at github.com/ged-lab/khmer

    Bloom Filters in Adversarial Environments

    Get PDF
    Many efficient data structures use randomness, allowing them to improve upon deterministic ones. Usually, their efficiency and correctness are analyzed using probabilistic tools under the assumption that the inputs and queries are independent of the internal randomness of the data structure. In this work, we consider data structures in a more robust model, which we call the adversarial model. Roughly speaking, this model allows an adversary to choose inputs and queries adaptively according to previous responses. Specifically, we consider a data structure known as "Bloom filter" and prove a tight connection between Bloom filters in this model and cryptography. A Bloom filter represents a set SS of elements approximately, by using fewer bits than a precise representation. The price for succinctness is allowing some errors: for any xSx \in S it should always answer `Yes', and for any xSx \notin S it should answer `Yes' only with small probability. In the adversarial model, we consider both efficient adversaries (that run in polynomial time) and computationally unbounded adversaries that are only bounded in the number of queries they can make. For computationally bounded adversaries, we show that non-trivial (memory-wise) Bloom filters exist if and only if one-way functions exist. For unbounded adversaries we show that there exists a Bloom filter for sets of size nn and error ε\varepsilon, that is secure against tt queries and uses only O(nlog1ε+t)O(n \log{\frac{1}{\varepsilon}}+t) bits of memory. In comparison, nlog1εn\log{\frac{1}{\varepsilon}} is the best possible under a non-adaptive adversary

    Improvements in Hardware Transactional Memory for GPU Architectures

    Get PDF
    In the multi-core CPU world, transactional memory (TM)has emerged as an alternative to lock-based programming for thread synchronization. Recent research proposes the use of TM in GPU architectures, where a high number of computing threads, organized in SIMT fashion, requires an effective synchronization method. In contrast to CPUs, GPUs offer two memory spaces: global memory and local memory. The local memory space serves as a shared scratch-pad for a subset of the computing threads, and it is used by programmers to speed-up their applications thanks to its low latency. Prior work from the authors proposed a lightweight hardware TM (HTM) support based in the local memory, modifying the SIMT execution model and adding a conflict detection mechanism. An efficient implementation of these features is key in order to provide an effective synchronization mechanism at the local memory level. After a quick description of the main features of our HTM design for GPU local memory, in this work we gather together a number of proposals designed with the aim of improving those mechanisms with high impact on performance. Firstly, the SIMT execution model is modified to increase the parallelism of the application when transactions must be serialized in order to make forward progress. Secondly, the conflict detection mechanism is optimized depending on application characteristics, such us the read/write sets, the probability of conflict between transactions and the existence of read-only transactions. As these features can be present in hardware simultaneously, it is a task of the compiler and runtime to determine which ones are more important for a given application. This work includes a discussion on the analysis to be done in order to choose the best configuration solution.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    New hardware support transactional memory and parallel debugging in multicore processors

    Get PDF
    This thesis contributes to the area of hardware support for parallel programming by introducing new hardware elements in multicore processors, with the aim of improving the performance and optimize new tools, abstractions and applications related with parallel programming, such as transactional memory and data race detectors. Specifically, we configure a hardware transactional memory system with signatures as part of the hardware support, and we develop a new hardware filter for reducing the signature size. We also develop the first hardware asymmetric data race detector (which is also able to tolerate them), based also in hardware signatures. Finally, we propose a new module of hardware signatures that solves some of the problems that we found in the previous tools related with the lack of flexibility in hardware signatures

    Memory disambiguation hardware: a review

    Get PDF
    One of the main challenges of modern processor designs is the implementation of scalable and efficient mechanisms to detect memory access order violations as a result of out-of-order execution. Conventional structures performing this task are complex, inefficient and power-hungry. This fact has generated a large body of work on optimizing address-based memory disambiguation logic, namely the load-store queue. In this paper we review the most significant proposals in this research field, focusing on our own contributions.Facultad de Informátic

    Development and field assessment of a quantitative PCR for the detection and enumeration of the noxious bloom-former Anabaena planktonica

    Get PDF
    Anabaena planktonica is a harmful, bloom-forming freshwater cyanobacterium, which has arrived recently in New Zealand. In the short time since its incursion (<10 yr), A. planktonica has spread rapidly throughout lakes in the North Island. To date, the identification and enumeration of A. planktonica has been undertaken using light microscopy. There is an urgent demand for a highly sensitive and specific quantitative detection method that can be combined with a high sample processing capability in order to increase sampling frequency. In this study, we sequenced 36 cyanobacterial 16S rRNA genes (partial), complete intergenic transcribed spacers (ITS), and 23S rRNA genes (partial) of fresh-water cyanobacteria found in New Zealand. The sequences were used to develop an A. Planktonica specific TaqMan QPCR assay targeting the long ITS1-L and the 5´ terminus of the 23S rRNA gene. The QPCR method was linear (R2 = 0.999) over seven orders of magnitude with a lower end sensitivity of approximately five A. planktonica cells in the presence of exogenous DNA. The quantitative PCR (QPCR) method was used to assess the spatial distribution and seasonal population dynamics of A. planktonica from the Lower Karori Reservoir (Wellington, New Zealand) over a five-month period. The QPCR results were compared directly to microscopic cell counts and found to correlate significantly (95% confidence level) under both bloom and non-bloom conditions. The current QPCR assay will be an invaluable tool for routine monitoring programs and in research investigating environmental factors that regulate the population dynamics and the blooming of A. planktonica

    Anagram: A Content Anomaly Detector Resistant to Mimicry Attack

    Get PDF
    In this paper, we present Anagram, a content anomaly detector that models a mixture of high-order n-grams (n > 1) designed to detect anomalous and suspicious network packet payloads. By using higher- order n-grams, Anagram can detect significant anomalous byte sequences and generate robust signatures of validated malicious packet content. The Anagram content models are implemented using highly efficient Bloom filters, reducing space requirements and enabling privacy-preserving cross-site correlation. The sensor models the distinct content flow of a network or host using a semi- supervised training regimen. Previously known exploits, extracted from the signatures of an IDS, are likewise modeled in a Bloom filter and are used during training as well as detection time. We demonstrate that Anagram can identify anomalous traffic with high accuracy and low false positive rates. Anagram’s high-order n-gram analysis technique is also resilient against simple mimicry attacks that blend exploits with normal appearing byte padding, such as the blended polymorphic attack recently demonstrated in. We discuss randomized n-gram models, which further raises the bar and makes it more difficult for attackers to build precise packet structures to evade Anagram even if they know the distribution of the local site content flow. Finally, Anagram-’s speed and high detection rate makes it valuable not only as a standalone sensor, but also as a network anomaly flow classifier in an instrumented fault-tolerant host-based environment; this enables significant cost amortization and the possibility of a symbiotic feedback loop that can improve accuracy and reduce false positive rates over time

    A practical index for approximate dictionary matching with few mismatches

    Get PDF
    Approximate dictionary matching is a classic string matching problem (checking if a query string occurs in a collection of strings) with applications in, e.g., spellchecking, online catalogs, geolocation, and web searchers. We present a surprisingly simple solution called a split index, which is based on the Dirichlet principle, for matching a keyword with few mismatches, and experimentally show that it offers competitive space-time tradeoffs. Our implementation in the C++ language is focused mostly on data compaction, which is beneficial for the search speed (e.g., by being cache friendly). We compare our solution with other algorithms and we show that it performs better for the Hamming distance. Query times in the order of 1 microsecond were reported for one mismatch for the dictionary size of a few megabytes on a medium-end PC. We also demonstrate that a basic compression technique consisting in qq-gram substitution can significantly reduce the index size (up to 50% of the input text size for the DNA), while still keeping the query time relatively low

    A Case for Self-Managing DRAM Chips: Improving Performance, Efficiency, Reliability, and Security via Autonomous in-DRAM Maintenance Operations

    Full text link
    The memory controller is in charge of managing DRAM maintenance operations (e.g., refresh, RowHammer protection, memory scrubbing) in current DRAM chips. Implementing new maintenance operations often necessitates modifications in the DRAM interface, memory controller, and potentially other system components. Such modifications are only possible with a new DRAM standard, which takes a long time to develop, leading to slow progress in DRAM systems. In this paper, our goal is to 1) ease, and thus accelerate, the process of enabling new DRAM maintenance operations and 2) enable more efficient in-DRAM maintenance operations. Our idea is to set the memory controller free from managing DRAM maintenance. To this end, we propose Self-Managing DRAM (SMD), a new low-cost DRAM architecture that enables implementing new in-DRAM maintenance mechanisms (or modifying old ones) with no further changes in the DRAM interface, memory controller, or other system components. We use SMD to implement new in-DRAM maintenance mechanisms for three use cases: 1) periodic refresh, 2) RowHammer protection, and 3) memory scrubbing. We show that SMD enables easy adoption of efficient maintenance mechanisms that significantly improve the system performance and energy efficiency while providing higher reliability compared to conventional DDR4 DRAM. A combination of SMD-based maintenance mechanisms that perform refresh, RowHammer protection, and memory scrubbing achieve 7.6% speedup and consume 5.2% less DRAM energy on average across 20 memory-intensive four-core workloads. We make SMD source code openly and freely available at [128]
    corecore