60 research outputs found

    A comprehensive review of fruit and vegetable classification techniques

    Get PDF
    Recent advancements in computer vision have enabled wide-ranging applications in every field of life. One such application area is fresh produce classification, but the classification of fruit and vegetable has proven to be a complex problem and needs to be further developed. Fruit and vegetable classification presents significant challenges due to interclass similarities and irregular intraclass characteristics. Selection of appropriate data acquisition sensors and feature representation approach is also crucial due to the huge diversity of the field. Fruit and vegetable classification methods have been developed for quality assessment and robotic harvesting but the current state-of-the-art has been developed for limited classes and small datasets. The problem is of a multi-dimensional nature and offers significantly hyperdimensional features, which is one of the major challenges with current machine learning approaches. Substantial research has been conducted for the design and analysis of classifiers for hyperdimensional features which require significant computational power to optimise with such features. In recent years numerous machine learning techniques for example, Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision Trees, Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) have been exploited with many different feature description methods for fruit and vegetable classification in many real-life applications. This paper presents a critical comparison of different state-of-the-art computer vision methods proposed by researchers for classifying fruit and vegetable

    Automated Quality Control in Manufacturing Production Lines: A Robust Technique to Perform Product Quality Inspection

    Get PDF
    Quality control (QC) in manufacturing processes is critical to ensuring consumers receive products with proper functionality and reliability. Faulty products can lead to additional costs for the manufacturer and damage trust in a brand. A growing trend in QC is the use of machine vision (MV) systems because of their noncontact inspection, high repeatability, and efficiency. This thesis presents a robust MV system developed to perform comparative dimensional inspection on diversely shaped samples. Perimeter, area, rectangularity, and circularity are determined in the dimensional inspection algorithm for a base item and test items. A score determined with the four obtained parameter values provides the likeness between the base item and a test item. Additionally, a surface defect inspection is offered capable of identifying scratches, dents, and markings. The dimensional and surface inspections are used in a QC industrial case study. The case study examines the existing QC system for an electric motor manufacturer and proposes the developed QC system to increase product inspection count and efficiency while maintaining accuracy and reliability. Finally, the QC system is integrated in a simulated product inspection line consisting of a robotic arm and conveyor belts. The simulated product inspection line could identify the correct defect in all tested items and demonstrated the system’s automation capabilities

    Image Analysis and Machine Learning in Agricultural Research

    Get PDF
    Agricultural research has been a focus for academia and industry to improve human well-being. Given the challenges in water scarcity, global warming, and increased prices of fertilizer, and fossil fuel, improving the efficiency of agricultural research has become even more critical. Data collection by humans presents several challenges including: 1) the subjectiveness and reproducibility when doing the visual evaluation, 2) safety when dealing with high toxicity chemicals or severe weather events, 3) mistakes cannot be avoided, and 4) low efficiency and speed. Image analysis and machine learning are more versatile and advantageous in evaluating different plant characteristics, and this could help with agricultural data collection. In the first chapter, information related to different types of imaging (e.g., RGB, multi/hyperspectral, and thermal imaging) was explored in detail for its advantages in different agriculture applications. The process of image analysis demonstrated how target features were extracted for analysis including shape, edge, texture, and color. After acquiring features information, machine learning can be used to automatically detect or predict features of interest such as disease severity. In the second chapter, case studies of different agricultural applications were demonstrated including: 1) leaf damage symptoms, 2) stress evaluation, 3) plant growth evaluation, 4) stand/insect counting, and 5) evaluation for produce quality. Case studies showed that the use of image analysis is often more advantageous than visual rating. Advantages of image analysis include increased objectivity, speed, and more reproducibly reliable results. In the third chapter, machine learning was explored using romaine lettuce images from RD4AG to automatically grade for bolting and compactness (two of the important parameters for lettuce quality). Although the accuracy is at 68.4 and 66.6% respectively, a much larger data base and many improvements are needed to increase the model accuracy and reliability. With the advancement in cameras, computers with high computing power, and the development of different algorithms, image analysis and machine learning have the potential to replace part of the labor and improve the current data collection procedure in agricultural research. Advisor: Gary L. Hei

    Development of a New Local Adaptive Thresholding Method and Classification Algorithms for X-ray Machine Vision Inspection of Pecans

    Get PDF
    This study evaluated selected local adaptive thresholding methods for pecan defect segmentation and proposed a new method: Reverse Water Flow. Good pecan nuts and fabricated defective pecan nuts were used for comparison, in addition to images from published research articles. For detailed comparison, defective and good pecans, 100 each, were collect from a mechanical sorter operating at Pecan Research Farm, Oklahoma State University. To improve classification accuracy and reduce the decision time AdaBoost and support vector machine classifiers were applied and compared with Bayesian classifier. The data set was randomly divided into training and validation sets and 300 such runs were made. A new local adaptive thresholding method with a new hypothesis: reversing the water flow and a simpler thresholding criterion is proposed. The new hypothesis, reversing the simulated water flow, reduced the computational time by 40-60% as compared to the existing fastest Oh method. The proposed method could segment both larBiosystems and Agricultural Engineerin

    Proceedings of the European Conference on Agricultural Engineering AgEng2021

    Get PDF
    This proceedings book results from the AgEng2021 Agricultural Engineering Conference under auspices of the European Society of Agricultural Engineers, held in an online format based on the University of Évora, Portugal, from 4 to 8 July 2021. This book contains the full papers of a selection of abstracts that were the base for the oral presentations and posters presented at the conference. Presentations were distributed in eleven thematic areas: Artificial Intelligence, data processing and management; Automation, robotics and sensor technology; Circular Economy; Education and Rural development; Energy and bioenergy; Integrated and sustainable Farming systems; New application technologies and mechanisation; Post-harvest technologies; Smart farming / Precision agriculture; Soil, land and water engineering; Sustainable production in Farm buildings

    Artificial intelligence and image processing applications for high-throughput phenotyping

    Get PDF
    Doctor of PhilosophyDepartment of Computer ScienceMitchell L NeilsenThe areas of Computer Vision and Scientific Computing have witnessed rapid growth in the last decade with the fields of industrial robotics, automotive and healthcare acting as the primary vehicles for research and advancement. However, related research in other fields, such as agriculture, remains an understudied problem. This dissertation explores the application of Computer Vision and Scientific Computing in an agricultural domain known as High-throughput Phenotyping (HTP). HTP is the assessment of complex seed traits such as growth, development, tolerance, resistance, ecology, yield, and the measurement of parameters that form more complex traits. The dissertation makes the following contributions: The first contribution is the development of algorithms to estimate morphometric traits such as length, width, area, and seed kernel count using 3-D graphics and static image processing, and the extension of existing algorithms for the same. The second contribution is the development of lightweight frameworks to aid in synthetic image dataset creation and image cropping for deep neural networks in HTP. Deep neural networks require a plethora of training data to yield results of the highest quality. However, no such training datasets are readily available for HTP research, especially on seed kernels. The proposed synthetic image generation framework helps generate a profusion of training data at will to train neural networks from a meager samples of seed kernels. Besides requiring large quantities of data, deep neural networks require the input to be a certain size. However, not all available data are in the size required by the deep neural networks. The proposed image cropper helps to resize images without resulting in any distortion, thereby, making image data fit for consumption. The third contribution is the design and analysis of supervised and self-supervised neural network architectures trained on synthetic images to perform the tasks of seed kernel classification, counting and morphometry. In the area of supervised image classification, state-of-the-art neural network models of VGG-16, VGG-19 and ResNet-101 are investigated. A Simple framework for Contrastive Learning of visual Representations (SimCLR) [137], Momentum Contrast (MoCo) [55] and Bootstrap Your Own Latent (BYOL) [123] are leveraged for self-supervised image classification. The instance-based segmentation deep neural network models of Mask R-CNN and YOLO are utilized to perform the tasks of seed kernel classification, segmentation and counting. The results demonstrate the feasibility of deep neural networks for their respective tasks of classification and instance segmentation. In addition to estimating seed kernel count from static images, algorithms that aid in seed kernel counting from videos are proposed and analyzed. Proposed is an algorithm that creates a slit image which can be analyzed to estimate seed count. Upon the creation of the slit image, the video is no longer required to estimate seed count, thereby, significantly lowering the computational resources required for the estimation. The fourth contribution is the development of an end-to-end, automated image capture system for single seed kernel analysis. In addition to estimating length and width from 2-D images, the proposed system estimates the volume of a seed kernel from 2-D images using the technique of volume sculpting. The relative standard deviation of the results produced by the proposed technique is lower (better) than the relative standard deviation of the results produced by volumetric estimation using the ellipsoid slicing technique. The fifth contribution is the development of image processing algorithms to provide feature enhancements to mobile applications to improve upon on-site phenotyping capabilities. Algorithms for two features of high value namely, leaf angle estimation and fractional plant cover estimation are developed. The leaf angle estimation feature estimates the angle between stem and leaf for images captured using mobile phone cameras whereas fractional plant cover is to determine companion plants i.e., plants that are able to co-exist and mutually benefit. The proposed techniques, frameworks and findings lay a solid foundation for future Computer Vision and Scientific Computing research in the domain of agriculture. The contributions are significant since the dissertation not only proposes techniques, but also develops low-cost end-to-end frameworks to leverage the proposed techniques in a scalable fashion

    Implementation of Digital Technologies on Beverage Fermentation

    Get PDF
    In the food and beverage industries, implementing novel methods using digital technologies such as artificial intelligence (AI), sensors, robotics, computer vision, machine learning (ML), and sensory analysis using augmented reality (AR) has become critical to maintaining and increasing the products’ quality traits and international competitiveness, especially within the past five years. Fermented beverages have been one of the most researched industries to implement these technologies to assess product composition and improve production processes and product quality. This Special Issue (SI) is focused on the latest research on the application of digital technologies on beverage fermentation monitoring and the improvement of processing performance, product quality and sensory acceptability
    • …
    corecore