67,271 research outputs found

    An Ensemble Framework for Detecting Community Changes in Dynamic Networks

    Full text link
    Dynamic networks, especially those representing social networks, undergo constant evolution of their community structure over time. Nodes can migrate between different communities, communities can split into multiple new communities, communities can merge together, etc. In order to represent dynamic networks with evolving communities it is essential to use a dynamic model rather than a static one. Here we use a dynamic stochastic block model where the underlying block model is different at different times. In order to represent the structural changes expressed by this dynamic model the network will be split into discrete time segments and a clustering algorithm will assign block memberships for each segment. In this paper we show that using an ensemble of clustering assignments accommodates for the variance in scalable clustering algorithms and produces superior results in terms of pairwise-precision and pairwise-recall. We also demonstrate that the dynamic clustering produced by the ensemble can be visualized as a flowchart which encapsulates the community evolution succinctly.Comment: 6 pages, under submission to HPEC Graph Challeng

    Communities in Networks

    Full text link
    We survey some of the concepts, methods, and applications of community detection, which has become an increasingly important area of network science. To help ease newcomers into the field, we provide a guide to available methodology and open problems, and discuss why scientists from diverse backgrounds are interested in these problems. As a running theme, we emphasize the connections of community detection to problems in statistical physics and computational optimization.Comment: survey/review article on community structure in networks; published version is available at http://people.maths.ox.ac.uk/~porterm/papers/comnotices.pd

    Community Structure in the United States House of Representatives

    Get PDF
    We investigate the networks of committee and subcommittee assignments in the United States House of Representatives from the 101st--108th Congresses, with the committees connected by ``interlocks'' or common membership. We examine the community structure in these networks using several methods, revealing strong links between certain committees as well as an intrinsic hierarchical structure in the House as a whole. We identify structural changes, including additional hierarchical levels and higher modularity, resulting from the 1994 election, in which the Republican party earned majority status in the House for the first time in more than forty years. We also combine our network approach with analysis of roll call votes using singular value decomposition to uncover correlations between the political and organizational structure of House committees.Comment: 44 pages, 13 figures (some with multiple parts and most in color), 9 tables, to appear in Physica A; new figures and revised discussion (including extra introductory material) for this versio

    Ground truth? Concept-based communities versus the external classification of physics manuscripts

    Full text link
    Community detection techniques are widely used to infer hidden structures within interconnected systems. Despite demonstrating high accuracy on benchmarks, they reproduce the external classification for many real-world systems with a significant level of discrepancy. A widely accepted reason behind such outcome is the unavoidable loss of non-topological information (such as node attributes) encountered when the original complex system is represented as a network. In this article we emphasize that the observed discrepancies may also be caused by a different reason: the external classification itself. For this end we use scientific publication data which i) exhibit a well defined modular structure and ii) hold an expert-made classification of research articles. Having represented the articles and the extracted scientific concepts both as a bipartite network and as its unipartite projection, we applied modularity optimization to uncover the inner thematic structure. The resulting clusters are shown to partly reflect the author-made classification, although some significant discrepancies are observed. A detailed analysis of these discrepancies shows that they carry essential information about the system, mainly related to the use of similar techniques and methods across different (sub)disciplines, that is otherwise omitted when only the external classification is considered.Comment: 15 pages, 2 figure

    Detecting Blackholes and Volcanoes in Directed Networks

    Full text link
    In this paper, we formulate a novel problem for finding blackhole and volcano patterns in a large directed graph. Specifically, a blackhole pattern is a group which is made of a set of nodes in a way such that there are only inlinks to this group from the rest nodes in the graph. In contrast, a volcano pattern is a group which only has outlinks to the rest nodes in the graph. Both patterns can be observed in real world. For instance, in a trading network, a blackhole pattern may represent a group of traders who are manipulating the market. In the paper, we first prove that the blackhole mining problem is a dual problem of finding volcanoes. Therefore, we focus on finding the blackhole patterns. Along this line, we design two pruning schemes to guide the blackhole finding process. In the first pruning scheme, we strategically prune the search space based on a set of pattern-size-independent pruning rules and develop an iBlackhole algorithm. The second pruning scheme follows a divide-and-conquer strategy to further exploit the pruning results from the first pruning scheme. Indeed, a target directed graphs can be divided into several disconnected subgraphs by the first pruning scheme, and thus the blackhole finding can be conducted in each disconnected subgraph rather than in a large graph. Based on these two pruning schemes, we also develop an iBlackhole-DC algorithm. Finally, experimental results on real-world data show that the iBlackhole-DC algorithm can be several orders of magnitude faster than the iBlackhole algorithm, which has a huge computational advantage over a brute-force method.Comment: 18 page

    Indexing of fictional video content for event detection and summarisation

    Get PDF
    This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach
    corecore