3,727 research outputs found

    Socially aware path planning for mobile robots

    Full text link
    © 2014 Cambridge University Press. Human-robot interaction is an emerging area of research where a robot may need to be working in human-populated environments. Human trajectories are generally not random and can belong to gross patterns. Knowledge about these patterns can be learned through observation. In this paper, we address the problem of a robot's social awareness by learning human motion patterns and integrating them in path planning. The gross motion patterns are learned using a novel Sampled Hidden Markov Model, which allows the integration of partial observations in dynamic model building. This model is used in the modified A∗ path planning algorithm to achieve socially aware trajectories. Novelty of the proposed method is that it can be used on a mobile robot for simultaneous online learning and path planning. The experiments carried out in an office environment show that the paths can be planned seamlessly, avoiding personal spaces of occupants

    Perceiving guaranteed collision-free robot trajectories in unknown and unpredictable environments

    Get PDF
    The dissertation introduces novel approaches for solving a fundamental problem: detecting a collision-free robot trajectory based on sensing in real-world environments that are mostly unknown and unpredictable, i.e., obstacle geometries and their motions are unknown. Such a collision-free trajectory must provide a guarantee of safe robot motion by accounting for robot motion uncertainty and obstacle motion uncertainty. Further, as simultaneous planning and execution of robot motion is required to navigate in such environments, the collision-free trajectory must be detected in real-time. Two novel concepts: (a) dynamic envelopes and (b) atomic obstacles, are introduced to perceive if a robot at a configuration q, at a future time t, i.e., at a point ? = (q, t) in the robot's configuration-time space (CT space), will be collision-free or not, based on sensor data generated at each sensing moment t, in real-time. A dynamic envelope detects a collision-free region in the CT space in spite of unknown motions of obstacles. Atomic obstacles are used to represent perceived unknown obstacles in the environment at each sensing moment. The robot motion uncertainty is modeled by considering that a robot actually moves in a certain tunnel of a desired trajectory in its CT space. An approach based on dynamic envelopes is presented for detecting if a continuous tunnel of trajectories are guaranteed collision-free in an unpredictable environment, where obstacle motions are unknown. An efficient collision-checker is also developed that can perform fast real-time collision detection between a dynamic envelope and a large number of atomic obstacles in an unknown environment. The effectiveness of these methods is tested for different robots using both simulations and real-world experiments

    Safe Local Navigation for Visually Impaired Users With a Time-of-Flight and Haptic Feedback Device

    Get PDF
    This paper presents ALVU (Array of Lidars and Vibrotactile Units), a contactless, intuitive, hands-free, and discreet wearable device that allows visually impaired users to detect low- and high-hanging obstacles, as well as physical boundaries in their immediate environment. The solution allows for safe local navigation in both confined and open spaces by enabling the user to distinguish free space from obstacles. The device presented is composed of two parts: a sensor belt and a haptic strap. The sensor belt is an array of time-of-flight distance sensors worn around the front of a user's waist, and the pulses of infrared light provide reliable and accurate measurements of the distances between the user and surrounding obstacles or surfaces. The haptic strap communicates the measured distances through an array of vibratory motors worn around the user's upper abdomen, providing haptic feedback. The linear vibration motors are combined with a point-loaded pretensioned applicator to transmit isolated vibrations to the user. We validated the device's capability in an extensive user study entailing 162 trials with 12 blind users. Users wearing the device successfully walked through hallways, avoided obstacles, and detected staircases.Andrea Bocelli FoundationNational Science Foundation (U.S.) (Grant NSF IIS1226883

    Development of new intelligent autonomous robotic assistant for hospitals

    Get PDF
    Continuous technological development in modern societies has increased the quality of life and average life-span of people. This imposes an extra burden on the current healthcare infrastructure, which also creates the opportunity for developing new, autonomous, assistive robots to help alleviate this extra workload. The research question explored the extent to which a prototypical robotic platform can be created and how it may be implemented in a hospital environment with the aim to assist the hospital staff with daily tasks, such as guiding patients and visitors, following patients to ensure safety, and making deliveries to and from rooms and workstations. In terms of major contributions, this thesis outlines five domains of the development of an actual robotic assistant prototype. Firstly, a comprehensive schematic design is presented in which mechanical, electrical, motor control and kinematics solutions have been examined in detail. Next, a new method has been proposed for assessing the intrinsic properties of different flooring-types using machine learning to classify mechanical vibrations. Thirdly, the technical challenge of enabling the robot to simultaneously map and localise itself in a dynamic environment has been addressed, whereby leg detection is introduced to ensure that, whilst mapping, the robot is able to distinguish between people and the background. The fourth contribution is geometric collision prediction into stabilised dynamic navigation methods, thus optimising the navigation ability to update real-time path planning in a dynamic environment. Lastly, the problem of detecting gaze at long distances has been addressed by means of a new eye-tracking hardware solution which combines infra-red eye tracking and depth sensing. The research serves both to provide a template for the development of comprehensive mobile assistive-robot solutions, and to address some of the inherent challenges currently present in introducing autonomous assistive robots in hospital environments.Open Acces

    A method for autonomous positioning avatars in a group

    Get PDF
    In this paper, we describe a method to position a group of avatars in a virtual environment. The method aims at a group setting that seems natural for a group of people attending a guided tour and was developed in particular to assist participants by autonomously positioning their avatars on each stop of a virtual tour. The geometry of the virtual environment is key input, but also engagement of participants and possible social networks are taken into account. Consequently, it may serve to position avatars in similar type of situations

    Predicting Motion Patterns Using Optimal Paths

    Get PDF
    The ability to navigate safely and efficiently through a given landscape is relevant for any intelligent moving object. Examples range from robotic science and traffic analysis, to the behavior within an ecosystem. Many objects tend to move in patterns depending on their nature. By establishing models of patterns of motion one may estimate the future motion within an area. We propose here a method for detecting regular patterns of motion by modeling the environment as an energy landscape, and locating optimal paths through it. As an example, we use maritime position Automatic Identification System (AIS) data as input to work out optimal routes between different start and end points when these are not located along the standard shipping lanes. These initial tests show that the method has potential for analyzing and determining regular patterns of motion.publishedVersio

    Understanding interactions between autonomous vehicles and other road users: A literature review

    Get PDF
    This review draws on literature relating to the interactions of vehicles with other vehicles, interactions between vehicles and infrastructure, and interactions between autonomous vehicles and cyclists and autonomous vehicles and pedestrians. The available literature relating to autonomous vehicles interactions is currently limited and hence the review has considered issues which will be relevant to autonomous vehicles from reading and evaluating a broader but still relevant literature.The project is concerned primarily with autonomous vehicles within the urban environment and hence the greatest consideration has been given to interactions on typical urban roads, with specific consideration also being given to shared space. The central questions in relation to autonomous vehicles and other road users revolve around gap acceptance, overtaking behaviour, behaviour at road narrowings, the ability to detect and avoid cyclists taking paths through a junction which conflict with the autonomous vehicle’s path, and the ability of autonomous vehicles to sense and respond to human gestures. A long list of potential research questions has been developed, many of which are not realistically answerable by the Venturer project. However, the important research questions which might potentially be answered by the current project are offered as the basis for the more detailed consideration of the conduct of the interaction trial

    Development of Robust Behaviour Recognition for an at-Home Biomonitoring Robot with Assistance of Subject Localization and Enhanced Visual Tracking

    Get PDF
    Our research is focused on the development of an at-home health care biomonitoringmobile robot for the people in demand. Main task of the robot is to detect and track a designated subject while recognizing his/her activity for analysis and to provide warning in an emergency. In order to push forward the system towards its real application, in this study, we tested the robustness of the robot system with several major environment changes, control parameter changes, and subject variation. First, an improved color tracker was analyzed to find out the limitations and constraints of the robot visual tracking considering the suitable illumination values and tracking distance intervals.Then, regarding subject safety and continuous robot based subject tracking, various control parameters were tested on different layouts in a room. Finally, the main objective of the system is to find out walking activities for different patterns for further analysis. Therefore, we proposed a fast, simple, and person specific new activity recognition model by making full use of localization information, which is robust to partial occlusion. The proposed activity recognition algorithm was tested on different walking patterns with different subjects, and the results showed high recognition accuracy
    corecore