1,322 research outputs found

    Towards the Deployment of Machine Learning Solutions in Network Traffic Classification: A Systematic Survey

    Get PDF
    International audienceTraffic analysis is a compound of strategies intended to find relationships, patterns, anomalies, and misconfigurations, among others things, in Internet traffic. In particular, traffic classification is a subgroup of strategies in this field that aims at identifying the application's name or type of Internet traffic. Nowadays, traffic classification has become a challenging task due to the rise of new technologies, such as traffic encryption and encapsulation, which decrease the performance of classical traffic classification strategies. Machine Learning gains interest as a new direction in this field, showing signs of future success, such as knowledge extraction from encrypted traffic, and more accurate Quality of Service management. Machine Learning is fast becoming a key tool to build traffic classification solutions in real network traffic scenarios; in this sense, the purpose of this investigation is to explore the elements that allow this technique to work in the traffic classification field. Therefore, a systematic review is introduced based on the steps to achieve traffic classification by using Machine Learning techniques. The main aim is to understand and to identify the procedures followed by the existing works to achieve their goals. As a result, this survey paper finds a set of trends derived from the analysis performed on this domain; in this manner, the authors expect to outline future directions for Machine Learning based traffic classification

    Anomaly Detection Algorithms and Techniques for Network Intrusion Detection Systems

    Get PDF
    In recent years, many deep learning-based models have been proposed for anomaly detection. This thesis presents a comparison of selected deep autoencoding models and classical anomaly detection methods on three modern network intrusion detection datasets. We experiment with different configurations and architectures of the selected models, as well as aggregation techniques for input preprocessing and output postprocessing. We propose a methodology for creating benchmark datasets for the evaluation of the methods in different settings. We provide a statistical comparison of the performance of the selected techniques. We conclude that the deep autoencoding models, in particular AE and VAE, systematically outperform the classic methods. Furthermore, we show that aggregating input network flow data improves the overall performance. In general, the tested techniques are promising regarding their application in network intrusion detection systems. However, secondary techniques must be employed to reduce the high numbers of generated false alarms
    corecore