1,969 research outputs found

    The application of ERTS imagery to monitoring Arctic sea ice

    Get PDF
    The author has identified the following significant results. Because of the effect of sea ice on the heat balance of the Arctic and because of the expanding economic interest in arctic oil and minerals, extensive monitoring and further study of sea ice is required. The application of ERTS data for mapping ice is evaluated for several arctic areas, including the Bering Sea, the eastern Beaufort Sea, parts of the Canadian Archipelago, and the Greenland Sea. Interpretive techniques are discussed, and the scales and types of ice features that can be detected are described. For the Bering Sea, a sample of ERTS-1 imagery is compared with visual ice reports and aerial photography from the NASA CV-990 aircraft. The results of the investigation demonstrate that ERTS-1 imagery has substantial practical application for monitoring arctic sea ice. Ice features as small as 80-100 m in width can be detected, and the combined use of the visible and near-IR imagery is a powerful tool for identifying ice types. Sequential ERTS-1 observations at high latitudes enable ice deformations and movements to be mapped. Ice conditions in the Bering Sea during early March depicted in ERTS-1 images are in close agreement with aerial ice observations and photographs

    A study to develop improved spacecraft show survey methods using Skylab/EREP data: Demonstration of the utility of the S190 and S192 data

    Get PDF
    The author has identified the following significant results. This interim report provides a demonstration of the utility of spacecraft acquired Skylab S190A and S190B photography and S192 imagery for mapping areal extent of snow cover in western United States test site areas. The data sample is from the SL-2 mission flown in June 1973. Results of the investigation indicate that areal snow cover extent can be mapped more accurately from the S190A and S190B photography than from any other spacecraft system, including ERTS. The results of a qualitative analysis of the S192 imagery indicate considerable potential for the utility of multispectral snow cover analysis; the potential for distinguishing snow from clouds automatically is particularly significant

    The application of ERTS imagery to mapping snow cover in the western United States

    Get PDF
    The author has identified the following significant results. In much of the western United States a large part of the utilized water comes from accumulated mountain snowpacks; thus, accurate measurements of snow distributions are required for input to streamflow prediction models. The application of ERTS-1 imagery for mapping snow has been evaluated for two geographic areas, the Salt-Verde watershed in central Arizona and the southern Sierra Nevada in California. Techniques have been developed to identify snow and to differentiate between snow and cloud. The snow extent for these two drainage areas has been mapped from the MSS-5 (0.6 - 0.7 microns) imagery and compared with aerial survey snow charts, aircraft photography, and ground-based snow measurements. The results indicate that ERTS imagery has substantial practical applications for snow mapping. Snow extent can be mapped from ERTS-1 imagery in more detail than is depicted on aerial survey snow charts. Moreover, in Arizona and southern California cloud obscuration does not appear to be a serious deterrent to the use of satellite data for snow survey. The costs involved in deriving snow maps from ERTS-1 imagery appear to be very reasonable in comparison with existing data collection methods

    Evaluation of ERTS-1 data for inventory of forest and rangeland and detection of forest stress

    Get PDF
    The author has identified the following significant results. Results of photointerpretation indicated that ERTS is a good classifier of forest and nonforest lands (90 to 95 percent accurate). Photointerpreters could make this separation as accurately as signature analysis of the computer compatible tapes. Further breakdowns of cover types at each site could not be accurately classified by interpreters (60 percent) or computer analysts (74 percent). Exceptions were water, wet meadow, and coniferous stands. At no time could the large bark beetle infestations (many over 300 meters in size) be detected on ERTS images. The ERTS wavebands are too broad to distinguish the yellow, yellow-red, and red colors of the dying pine foliage from healthy green-yellow foliage. Forest disturbances could be detected on ERTS color composites about 90 percent of the time when compared with six-year-old photo index mosaics. ERTS enlargements (1:125,000 scale, preferably color prints) would be useful to forest managers of large ownerships over 5,000 hectares (12,500 acres) for broad area planning. Black-and-white enlargements can be used effectively as aerial navigation aids for precision aerial photography where maps are old or not available

    Predicting growing stock volume of Eucalyptus plantations using 3-D point clouds derived from UAV imagery and ALS data

    Get PDF
    Estimating forest inventory variables is important in monitoring forest resources and mitigating climate change. In this respect, forest managers require flexible, non-destructive methods for estimating volume and biomass. High-resolution and low-cost remote sensing data are increasingly available to measure three-dimensional (3D) canopy structure and to model forest structural attributes. The main objective of this study was to evaluate and compare the individual tree volume estimates derived from high-density point clouds obtained from airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) in Eucalyptus spp. plantations. Object-based image analysis (OBIA) techniques were applied for individual tree crown (ITC) delineation. The ITC algorithm applied correctly detected and delineated 199 trees from ALS-derived data, while 192 trees were correctly identified using DAP-based point clouds acquired fromUnmannedAerialVehicles(UAV), representing accuracy levels of respectively 62% and 60%. Addressing volume modelling, non-linear regression fit based on individual tree height and individual crown area derived from the ITC provided the following results: Model E ciency (Mef) = 0.43 and 0.46, Root Mean Square Error (RMSE) = 0.030 m3 and 0.026 m3, rRMSE = 20.31% and 19.97%, and an approximately unbiased results (0.025 m3 and 0.0004 m3) using DAP and ALS-based estimations, respectively. No significant di erence was found between the observed value (field data) and volume estimation from ALS and DAP (p-value from t-test statistic = 0.99 and 0.98, respectively). The proposed approaches could also be used to estimate basal area or biomass stocks in Eucalyptus spp. plantationsinfo:eu-repo/semantics/publishedVersio

    Applicability of satellite remote sensing for detection and monitoring of coal strip mining activities

    Get PDF
    The author has identified the following significant results. Large areas covered by orbital photography allows the user to estimate the acreage of strip mining activity from a few frames. Infrared photography both in color and in black and white transparencies was found to be the best suited for this purpose

    Monitoring spatial sustainable development: Semi-automated analysis of satellite and aerial images for energy transition and sustainability indicators

    Full text link
    Solar panels are installed by a large and growing number of households due to the convenience of having cheap and renewable energy to power house appliances. In contrast to other energy sources solar installations are distributed very decentralized and spread over hundred-thousands of locations. On a global level more than 25% of solar photovoltaic (PV) installations were decentralized. The effect of the quick energy transition from a carbon based economy to a green economy is though still very difficult to quantify. As a matter of fact the quick adoption of solar panels by households is difficult to track, with local registries that miss a large number of the newly built solar panels. This makes the task of assessing the impact of renewable energies an impossible task. Although models of the output of a region exist, they are often black box estimations. This project's aim is twofold: First automate the process to extract the location of solar panels from aerial or satellite images and second, produce a map of solar panels along with statistics on the number of solar panels. Further, this project takes place in a wider framework which investigates how official statistics can benefit from new digital data sources. At project completion, a method for detecting solar panels from aerial images via machine learning will be developed and the methodology initially developed for BE, DE and NL will be standardized for application to other EU countries. In practice, machine learning techniques are used to identify solar panels in satellite and aerial images for the province of Limburg (NL), Flanders (BE) and North Rhine-Westphalia (DE).Comment: This document provides the reader with an overview of the various datasets which will be used throughout the project. The collection of satellite and aerial images as well as auxiliary information such as the location of buildings and roofs which is required to train, test and validate the machine learning algorithm that is being develope

    Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA)

    Get PDF
    Nowadays, emerging technologies, such as long-range transmitters, increasingly miniaturized components for positioning, and enhanced imaging sensors, have led to an upsurge in the availability of new ecological applications for remote sensing based on unmanned aerial vehicles (UAVs), sometimes referred to as “drones”. In fact, structure-from-motion (SfM) photogrammetry coupled with imagery acquired by UAVs offers a rapid and inexpensive tool to produce high-resolution orthomosaics, giving ecologists a new way for responsive, timely, and cost-effective monitoring of ecological processes. Here, we adopted a lightweight quadcopter as an aerial survey tool and object-based image analysis (OBIA) workflow to demonstrate the strength of such methods in producing very high spatial resolution maps of sensitive marine habitats. Therefore, three different coastal environments were mapped using the autonomous flight capability of a lightweight UAV equipped with a fully stabilized consumer-grade RGB digital camera. In particular we investigated a Posidonia oceanica seagrass meadow, a rocky coast with nurseries for juvenile fish, and two sandy areas showing biogenic reefs of Sabelleria alveolata. We adopted, for the first time, UAV-based raster thematic maps of these key coastal habitats, produced after OBIA classification, as a new method for fine-scale, low-cost, and time saving characterization of sensitive marine environments which may lead to a more effective and efficient monitoring and management of natural resource

    Suitability of ground-based SfM-MVS for monitoring glacial and periglacial processes

    Get PDF
    Photo-based surface reconstruction is rapidly emerging as an alternative survey technique to lidar (light detection and ranging) in many fields of geoscience fostered by the recent development of computer vision algorithms such as structure from motion (SfM) and dense image matching such as multi-view stereo (MVS). The objectives of this work are to test the suitability of the ground-based SfM-MVS approach for calculating the geodetic mass balance of a 2.1km2 glacier and for detecting the surface displacement of a neighbouring active rock glacier located in the eastern Italian Alps. The photos were acquired in 2013 and 2014 using a digital consumer-grade camera during single-day field surveys. Airborne laser scanning (ALS, otherwise known as airborne lidar) data were used as benchmarks to estimate the accuracy of the photogrammetric digital elevation models (DEMs) and the reliability of the method. The SfM-MVS approach enabled the reconstruction of high-quality DEMs, which provided estimates of glacial and periglacial processes similar to those achievable using ALS. In stable bedrock areas outside the glacier, the mean and the standard deviation of the elevation difference between the SfM-MVS DEM and the ALS DEM was-0.42 \ub1 1.72 and 0.03 \ub1 0.74 m in 2013 and 2014, respectively. The overall pattern of elevation loss and gain on the glacier were similar with both methods, ranging between-5.53 and + 3.48 m. In the rock glacier area, the elevation difference between the SfM-MVS DEM and the ALS DEM was 0.02 \ub1 0.17 m. The SfM-MVS was able to reproduce the patterns and the magnitudes of displacement of the rock glacier observed by the ALS, ranging between 0.00 and 0.48 m per year. The use of natural targets as ground control points, the occurrence of shadowed and low-contrast areas, and in particular the suboptimal camera network geometry imposed by the morphology of the study area were the main factors affecting the accuracy of photogrammetric DEMs negatively. Technical improvements such as using an aerial platform and/or placing artificial targets could significantly improve the results but run the risk of being more demanding in terms of costs and logistics
    corecore