13,066 research outputs found

    Proposing a hybrid approach for emotion classification using audio and video data

    Get PDF
    Emotion recognition has been a research topic in the field of Human-Computer Interaction (HCI) during recent years. Computers have become an inseparable part of human life. Users need human-like interaction to better communicate with computers. Many researchers have become interested in emotion recognition and classification using different sources. A hybrid approach of audio and text has been recently introduced. All such approaches have been done to raise the accuracy and appropriateness of emotion classification. In this study, a hybrid approach of audio and video has been applied for emotion recognition. The innovation of this approach is selecting the characteristics of audio and video and their features as a unique specification for classification. In this research, the SVM method has been used for classifying the data in the SAVEE database. The experimental results show the maximum classification accuracy for audio data is 91.63% while by applying the hybrid approach the accuracy achieved is 99.26%

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field

    A virtual diary companion

    Get PDF
    Chatbots and embodied conversational agents show turn based conversation behaviour. In current research we almost always assume that each utterance of a human conversational partner should be followed by an intelligent and/or empathetic reaction of chatbot or embodied agent. They are assumed to be alert, trying to please the user. There are other applications which have not yet received much attention and which require a more patient or relaxed attitude, waiting for the right moment to provide feedback to the human partner. Being able and willing to listen is one of the conditions for being successful. In this paper we have some observations on listening behaviour research and introduce one of our applications, the virtual diary companion

    No Grice: Computers that Lie, Deceive and Conceal

    Get PDF
    In the future our daily life interactions with other people, with computers, robots and smart environments will be recorded and interpreted by computers or embedded intelligence in environments, furniture, robots, displays, and wearables. These sensors record our activities, our behavior, and our interactions. Fusion of such information and reasoning about such information makes it possible, using computational models of human behavior and activities, to provide context- and person-aware interpretations of human behavior and activities, including determination of attitudes, moods, and emotions. Sensors include cameras, microphones, eye trackers, position and proximity sensors, tactile or smell sensors, et cetera. Sensors can be embedded in an environment, but they can also move around, for example, if they are part of a mobile social robot or if they are part of devices we carry around or are embedded in our clothes or body. \ud \ud Our daily life behavior and daily life interactions are recorded and interpreted. How can we use such environments and how can such environments use us? Do we always want to cooperate with these environments; do these environments always want to cooperate with us? In this paper we argue that there are many reasons that users or rather human partners of these environments do want to keep information about their intentions and their emotions hidden from these smart environments. On the other hand, their artificial interaction partner may have similar reasons to not give away all information they have or to treat their human partner as an opponent rather than someone that has to be supported by smart technology.\ud \ud This will be elaborated in this paper. We will survey examples of human-computer interactions where there is not necessarily a goal to be explicit about intentions and feelings. In subsequent sections we will look at (1) the computer as a conversational partner, (2) the computer as a butler or diary companion, (3) the computer as a teacher or a trainer, acting in a virtual training environment (a serious game), (4) sports applications (that are not necessarily different from serious game or education environments), and games and entertainment applications

    Multisensory Emotion Recognition With Speech and Facial Expression

    Get PDF
    Computers through both desktop and mobile devices are only becoming more important in our lives leading us to have more involved and longer interactions with them. Because of this our brains actually classify our involvement with them in a manner similar to our interactions with our fellow humans. This can lead to frustration and anxiety when our computers interrupt our work or pleasure with contextually inappropriate messages, much the same way it would if a friend or co-worker was pushy or rude. A way to solve this issue is to give our machines emotional intelligence, or the ability to recognize and be aware of our emotions. While monitoring physiological symptoms such as skin conductivity and muscle tension is one of the most accurate ways of detecting emotions, it can also be done in a more physically and socially comfortable manner by way of visual and auditory clues. This thesis will create a bimodal system where input is visual information via a still image and auditory information via a clip of human speech. The system will use two existing programs to identify the emotion found in each and, by using a weighted system, return the singular emotion felt

    Multi-Platform Intelligent System for Multimodal Human-Computer Interaction

    Get PDF
    We present a flexible human--robot interaction architecture that incorporates emotions and moods to provide a natural experience for humans. To determine the emotional state of the user, information representing eye gaze and facial expression is combined with other contextual information such as whether the user is asking questions or has been quiet for some time. Subsequently, an appropriate robot behaviour is selected from a multi-path scenario. This architecture can be easily adapted to interactions with non-embodied robots such as avatars on a mobile device or a PC. We present the outcome of evaluating an implementation of our proposed architecture as a whole, and also of its modules for detecting emotions and questions. Results are promising and provide a basis for further development
    • …
    corecore