2,816 research outputs found

    Comparative Study Of Congestion Control Techniques In High Speed Networks

    Get PDF
    Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially to handle bursty traffic of todays very high speed networks. Since late 90s numerous schemes i.e. [1]...[10] etc. have been proposed. This paper concentrates on comparative study of the different congestion control schemes based on some key performance metrics. An effort has been made to judge the performance of Maximum Entropy (ME) based solution for a steady state GE/GE/1/N censored queues with partial buffer sharing scheme against these key performance metrics.Comment: 10 pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS November 2009, ISSN 1947 5500, http://sites.google.com/site/ijcsis

    Detecting Community Structure in Dynamic Social Networks Using the Concept of Leadership

    Full text link
    Detecting community structure in social networks is a fundamental problem empowering us to identify groups of actors with similar interests. There have been extensive works focusing on finding communities in static networks, however, in reality, due to dynamic nature of social networks, they are evolving continuously. Ignoring the dynamic aspect of social networks, neither allows us to capture evolutionary behavior of the network nor to predict the future status of individuals. Aside from being dynamic, another significant characteristic of real-world social networks is the presence of leaders, i.e. nodes with high degree centrality having a high attraction to absorb other members and hence to form a local community. In this paper, we devised an efficient method to incrementally detect communities in highly dynamic social networks using the intuitive idea of importance and persistence of community leaders over time. Our proposed method is able to find new communities based on the previous structure of the network without recomputing them from scratch. This unique feature, enables us to efficiently detect and track communities over time rapidly. Experimental results on the synthetic and real-world social networks demonstrate that our method is both effective and efficient in discovering communities in dynamic social networks

    SURGE: Continuous Detection of Bursty Regions Over a Stream of Spatial Objects

    Full text link
    With the proliferation of mobile devices and location-based services, continuous generation of massive volume of streaming spatial objects (i.e., geo-tagged data) opens up new opportunities to address real-world problems by analyzing them. In this paper, we present a novel continuous bursty region detection problem that aims to continuously detect a bursty region of a given size in a specified geographical area from a stream of spatial objects. Specifically, a bursty region shows maximum spike in the number of spatial objects in a given time window. The problem is useful in addressing several real-world challenges such as surge pricing problem in online transportation and disease outbreak detection. To solve the problem, we propose an exact solution and two approximate solutions, and the approximation ratio is 1−α4\frac{1-\alpha}{4} in terms of the burst score, where α\alpha is a parameter to control the burst score. We further extend these solutions to support detection of top-kk bursty regions. Extensive experiments with real-world data are conducted to demonstrate the efficiency and effectiveness of our solutions
    • …
    corecore