2,537 research outputs found

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed

    The New Abnormal: Network Anomalies in the AI Era

    Get PDF
    Anomaly detection aims at finding unexpected patterns in data. It has been used in several problems in computer networks, from the detection of port scans and DDoS attacks to the monitoring of time-series collected from Internet monitoring systems. Data-driven approaches and machine learning have seen widespread application on anomaly detection too, and this trend has been accelerated by the recent developments on Artificial Intelligence research. This chapter summarizes ongoing recent progresses on anomaly detection research. In particular, we evaluate how developments on AI algorithms bring new possibilities for anomaly detection. We cover new representation learning techniques such as Generative Artificial Networks and Autoencoders, as well as techniques that can be used to improve models learned with machine learning algorithms, such as reinforcement learning. We survey both research works and tools implementing AI algorithms for anomaly detection. We found that the novel algorithms, while successful in other fields, have hardly been applied to networking problems. We conclude the chapter with a case study that illustrates a possible research direction

    Detection of Review Abuse via Semi-Supervised Binary Multi-Target Tensor Decomposition

    Full text link
    Product reviews and ratings on e-commerce websites provide customers with detailed insights about various aspects of the product such as quality, usefulness, etc. Since they influence customers' buying decisions, product reviews have become a fertile ground for abuse by sellers (colluding with reviewers) to promote their own products or to tarnish the reputation of competitor's products. In this paper, our focus is on detecting such abusive entities (both sellers and reviewers) by applying tensor decomposition on the product reviews data. While tensor decomposition is mostly unsupervised, we formulate our problem as a semi-supervised binary multi-target tensor decomposition, to take advantage of currently known abusive entities. We empirically show that our multi-target semi-supervised model achieves higher precision and recall in detecting abusive entities as compared to unsupervised techniques. Finally, we show that our proposed stochastic partial natural gradient inference for our model empirically achieves faster convergence than stochastic gradient and Online-EM with sufficient statistics.Comment: Accepted to the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2019. Contains supplementary material. arXiv admin note: text overlap with arXiv:1804.0383

    Community-based Outlier Detection for Edge-attributed Graphs

    Get PDF
    The study of networks has emerged in diverse disciplines as a means of analyzing complex relationship data. Beyond graph analysis tasks like graph query processing, link analysis, influence propagation, there has recently been some work in the area of outlier detection for information network data. Although various kinds of outliers have been studied for graph data, there is not much work on anomaly detection from edge-attributed graphs. In this paper, we introduce a method that detects novel outlier graph nodes by taking into account the node data and edge data simultaneously to detect anomalies. We model the problem as a community detection task, where outliers form a separate community. We propose a method that uses a probabilistic graph model (Hidden Markov Random Field) for joint modeling of nodes and edges in the network to compute Holistic Community Outliers (HCOutliers). Thus, our model presents a natural setting for heterogeneous graphs that have multiple edges/relationships between two nodes. EM (Expectation Maximization) is used to learn model parameters, and infer hidden community labels. Experimental results on synthetic datasets and the DBLP dataset show the effectiveness of our approach for finding novel outliers from networks

    Fusion of Decision Tree and Gaussian Mixture Models for Heterogeneous Data Sets

    Get PDF
    Current data mining techniques have been developed with great success on homogeneous data. However, few techniques exist for heterogeneous data without further manipulation or consideration of dependencies among the different types of attributes. This paper presents a fusion of C4.5 Decision Tree and Gaussian Mixture Model (GMM) techniques for mixed-attribute data sets. The proposed fusion technique is used to detect anomalies in computer network data. Evaluation experiments were performed on the popular KDDCup 1999 data set using C4.5 Decision Tree, GMM and fusions of C4.5 and GMM. Experimental results showed a better performance for the proposed fusion technique compared to the individual techniques
    corecore