22,738 research outputs found

    Detecting and Tracking Cells using Network Flow Programming

    Get PDF
    We propose a novel approach to automatically detecting and tracking cell populations in time-lapse images. Unlike earlier ones that rely on linking a predetermined and potentially under-complete set of detections, we generate an overcomplete set of competing detection hypotheses. We then perform detection and tracking simultaneously by solving an integer program to find an optimal and consistent subset. This eliminates the need for heuristics to handle missed detections due to occlusions and complex morphology. We demonstrate the effectiveness of our approach on a range of challenging image sequences consisting of clumped cells and show that it outperforms state-of-the-art techniques

    Globally Optimal Cell Tracking using Integer Programming

    Get PDF
    We propose a novel approach to automatically tracking cell populations in time-lapse images. To account for cell occlusions and overlaps, we introduce a robust method that generates an over-complete set of competing detection hypotheses. We then perform detection and tracking simultaneously on these hypotheses by solving to optimality an integer program with only one type of flow variables. This eliminates the need for heuristics to handle missed detections due to occlusions and complex morphology. We demonstrate the effectiveness of our approach on a range of challenging sequences consisting of clumped cells and show that it outperforms state-of-the-art techniques.Comment: Engin T\"uretken and Xinchao Wang contributed equally to this wor

    Towards a Scalable Hardware/Software Co-Design Platform for Real-time Pedestrian Tracking Based on a ZYNQ-7000 Device

    Get PDF
    Currently, most designers face a daunting task to research different design flows and learn the intricacies of specific software from various manufacturers in hardware/software co-design. An urgent need of creating a scalable hardware/software co-design platform has become a key strategic element for developing hardware/software integrated systems. In this paper, we propose a new design flow for building a scalable co-design platform on FPGA-based system-on-chip. We employ an integrated approach to implement a histogram oriented gradients (HOG) and a support vector machine (SVM) classification on a programmable device for pedestrian tracking. Not only was hardware resource analysis reported, but the precision and success rates of pedestrian tracking on nine open access image data sets are also analysed. Finally, our proposed design flow can be used for any real-time image processingrelated products on programmable ZYNQ-based embedded systems, which benefits from a reduced design time and provide a scalable solution for embedded image processing products

    Robotic Mobile Holder (For CAR Dashboards)

    Get PDF
    In the current smart tech world, there is an immense need of automating tasks and processes to avoid human intervention, save time and energy. Nowadays, mobile phones have become one of the essential things for human beings either to call someone, connect to the internet, while driving people need mobile phones to receive or make a call, use google maps to know the routes and many more. Normally in cars, mobile holders are placed on the dashboard to hold the mobile and the orientation of the phone needs to be changed according to the driver's convenience manually, but the driver may distract from driving while trying to access mobile phone which may lead to accidents. To solve this problem, an auto adjustable mobile holder is designed in such a way that it rotates according to the movement of the driver and also it can even alert the driver when he feels drowsiness. Image Processing is used to detect the movement of the driver which is then processed using LabVIEW software and NI myRIO hardware. NI Vision development module is used to perform face recognition and servo motors are used to rotate the holder in the required position. Simulation results show that the proposed system has achieved maximum accuracy in detecting faces, drowsiness and finding the position coordinates
    corecore