2,223 research outputs found

    APHRODITE: an Anomaly-based Architecture for False Positive Reduction

    Get PDF
    We present APHRODITE, an architecture designed to reduce false positives in network intrusion detection systems. APHRODITE works by detecting anomalies in the output traffic, and by correlating them with the alerts raised by the NIDS working on the input traffic. Benchmarks show a substantial reduction of false positives and that APHRODITE is effective also after a "quick setup", i.e. in the realistic case in which it has not been "trained" and set up optimall

    ATLANTIDES: Automatic Configuration for Alert Verification in Network Intrusion Detection Systems

    Get PDF
    We present an architecture designed for alert verification (i.e., to reduce false positives) in network intrusion-detection systems. Our technique is based on a systematic (and automatic) anomaly-based analysis of the system output, which provides useful context information regarding the network services. The false positives raised by the NIDS analyzing the incoming traffic (which can be either signature- or anomaly-based) are reduced by correlating them with the output anomalies. We designed our architecture for TCP-based network services which have a client/server architecture (such as HTTP). Benchmarks show a substantial reduction of false positives between 50% and 100%

    Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks

    Full text link
    Malware still constitutes a major threat in the cybersecurity landscape, also due to the widespread use of infection vectors such as documents. These infection vectors hide embedded malicious code to the victim users, facilitating the use of social engineering techniques to infect their machines. Research showed that machine-learning algorithms provide effective detection mechanisms against such threats, but the existence of an arms race in adversarial settings has recently challenged such systems. In this work, we focus on malware embedded in PDF files as a representative case of such an arms race. We start by providing a comprehensive taxonomy of the different approaches used to generate PDF malware, and of the corresponding learning-based detection systems. We then categorize threats specifically targeted against learning-based PDF malware detectors, using a well-established framework in the field of adversarial machine learning. This framework allows us to categorize known vulnerabilities of learning-based PDF malware detectors and to identify novel attacks that may threaten such systems, along with the potential defense mechanisms that can mitigate the impact of such threats. We conclude the paper by discussing how such findings highlight promising research directions towards tackling the more general challenge of designing robust malware detectors in adversarial settings

    Detection of Software Vulnerability Communication in Expert Social Media Channels: A Data-driven Approach

    Get PDF
    Conceptually, a vulnerability is: A flaw or weakness in a system’s design, implementation,or operation and management that could be exploited to violate the system’s security policy .Some of these flaws can go undetected and exploited for long periods of time after soft-ware release. Although some software providers are making efforts to avoid this situ-ation, inevitability, users are still exposed to vulnerabilities that allow criminal hackersto take advantage. These vulnerabilities are constantly discussed in specialised forumson social media. Therefore, from a cyber security standpoint, the information found inthese places can be used for countermeasures actions against malicious exploitation ofsoftware. However, manual inspection of the vast quantity of shared content in socialmedia is impractical. For this reason, in this thesis, we analyse the real applicability ofsupervised classification models to automatically detect software vulnerability com-munication in expert social media channels. We cover the following three principal aspects: Firstly, we investigate the applicability of classification models in a range of 5 differ-ent datasets collected from 3 Internet Domains: Dark Web, Deep Web and SurfaceWeb. Since supervised models require labelled data, we have provided a systematiclabelling process using multiple annotators to guarantee accurate labels to carry outexperiments. Using these datasets, we have investigated the classification models withdifferent combinations of learning-based algorithms and traditional features represen-tation. Also, by oversampling the positive instances, we have achieved an increaseof 5% in Positive Recall (on average) in these models. On top of that, we have appiiplied Feature Reduction, Feature Extraction and Feature Selection techniques, whichprovided a reduction on the dimensionality of these models without damaging the accuracy, thus, providing computationally efficient models. Furthermore, in addition to traditional features representation, we have investigated the performance of robust language models, such as Word Embedding (WEMB) andSentence Embedding (SEMB) on the accuracy of classification models. RegardingWEMB, our experiment has shown that this model trained with a small security-vocabulary dataset provides comparable results with WEMB trained in a very large general-vocabulary dataset. Regarding SEMB model, our experiment has shown thatits use overcomes WEMB model in detecting vulnerability communication, recording 8% of Avg. Class Accuracy and 74% of Positive Recall. In addition, we investigate twoDeep Learning algorithms as classifiers, text CNN (Convolutional Neural Network)and RNN (Recurrent Neural Network)-based algorithms, which have improved ourmodel, resulting in the best overall performance for our task

    ATLANTIDES: An Architecture for Alert Verification in Network Intrusion Detection Systems

    Get PDF
    We present an architecture designed for alert verification (i.e., to reduce false positives) in network intrusion-detection systems. Our technique is based on a systematic (and automatic) anomaly-based analysis of the system output, which provides useful context information regarding the network services. The false positives raised by the NIDS analyzing the incoming traffic (which can be either signature- or anomaly-based) are reduced by correlating them with the output anomalies. We designed our architecture for TCP-based network services which have a client/server architecture (such as HTTP). Benchmarks show a substantial reduction of false positives between 50% and 100%
    corecore