729 research outputs found

    Scaling all-pairs overlay routing

    Get PDF
    This paper presents and experimentally evaluates a new algorithm for efficient one-hop link-state routing in full-mesh networks. Prior techniques for this setting scale poorly, as each node incurs quadratic (n[superscript 2]) communication overhead to broadcast its link state to all other nodes. In contrast, in our algorithm each node exchanges routing state with only a small subset of overlay nodes determined by using a quorum system. Using a two round protocol, each node can find an optimal one-hop path to any other node using only n[superscript 1.5] per-node communication. Our algorithm can also be used to find the optimal shortest path of arbitrary length using only n[superscript 1.5] logn per-node communication. The algorithm is designed to be resilient to both node and link failures. We apply this algorithm to a Resilient Overlay Network (RON) system, and evaluate the results using a large-scale, globally distributed set of Internet hosts. The reduced communication overhead from using our improved full-mesh algorithm allows the creation of all-pairs routing overlays that scale to hundreds of nodes, without reducing the system's ability to rapidly find optimal routes.National Science Foundation (U.S.).National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Securing Peer-to-Peer Overlay Networks

    Get PDF
    Overlay networks are virtual networks, which exist on top of the current Inter net architecture, and are used in support of peer-to-peer (P2P) applications. The virtualization provides overlays with the ability to create large, scalable, decentral ized networks with efficient routing. Many implementations of overlay networks have come out of academic research. Each provides a unique structure and routing configuration, aimed at increasing the overall network efficiency for a particular ap plication. However, they are all threatened by a similar set of severe vulnerabilities. I explore some of these security deficiencies of overlay network designs and pro pose a new overlay network security framework Phyllo. This framework aims to mitigate all of the targeted security problems across a majority of the current overlay implementations, while only requiring minimal design changes. In order to demonstrate the validity of Phyllo, it was implemented on top of the Pastry overlay architecture. The performance and security metrics of the network with the pro posed framework are evaluated against those of the original in order to demonstrate the feasibility of Phyllo

    Towards a fully mobile publish/subscribe system

    Get PDF
    93 p.This PhD thesis makes contributions to support mobility and fault tolerance in a publish/subscribe system. Two protocols are proposed in order to support mobility of all devices in the system, including inside the event notification service. The protocols are designed with the idea that any change due to mobility is completely beyond our control and ability to predict. Moreover, the proposed solutions do not need to know neither the amount of nodes in the system nor their identities before starting, the system is able to adapt to new devices or disconnections and is able to keep operating correctly in a partitioned network. To do so we extend a previously proposed framework called Phoenix that already supported client mobility. Both protocols use a leader election mechanism to create a communication tree in a highly dynamic environment, and use a characteristic of that algorithm to detect topology changes and migrate nodes accordingly

    Dynamic data placement and discovery in wide-area networks

    Get PDF
    The workloads of online services and applications such as social networks, sensor data platforms and web search engines have become increasingly global and dynamic, setting new challenges to providing users with low latency access to data. To achieve this, these services typically leverage a multi-site wide-area networked infrastructure. Data access latency in such an infrastructure depends on the network paths between users and data, which is determined by the data placement and discovery strategies. Current strategies are static, which offer low latencies upon deployment but worse performance under a dynamic workload. We propose dynamic data placement and discovery strategies for wide-area networked infrastructures, which adapt to the data access workload. We achieve this with data activity correlation (DAC), an application-agnostic approach for determining the correlations between data items based on access pattern similarities. By dynamically clustering data according to DAC, network traffic in clusters is kept local. We utilise DAC as a key component in reducing access latencies for two application scenarios, emphasising different aspects of the problem: The first scenario assumes the fixed placement of data at sites, and thus focusses on data discovery. This is the case for a global sensor discovery platform, which aims to provide low latency discovery of sensor metadata. We present a self-organising hierarchical infrastructure consisting of multiple DAC clusters, maintained with an online and distributed split-and-merge algorithm. This reduces the number of sites visited, and thus latency, during discovery for a variety of workloads. The second scenario focusses on data placement. This is the case for global online services that leverage a multi-data centre deployment to provide users with low latency access to data. We present a geo-dynamic partitioning middleware, which maintains DAC clusters with an online elastic partition algorithm. It supports the geo-aware placement of partitions across data centres according to the workload. This provides globally distributed users with low latency access to data for static and dynamic workloads.Open Acces

    Building Robust Distributed Infrastructure Networks

    Get PDF
    Many competing designs for Distributed Hash Tables exist exploring multiple models of addressing, routing and network maintenance. Designing a general theoretical model and implementation of a Distributed Hash Table allows exploration of the possible properties of Distributed Hash Tables. We will propose a generalized model of DHT behavior, centered on utilizing Delaunay triangulation in a given metric space to maintain the networks topology. We will show that utilizing this model we can produce network topologies that approximate existing DHT methods and provide a starting point for further exploration. We will use our generalized model of DHT construction to design and implement more efficient Distributed Hash Table protocols, and discuss the qualities of potential successors to existing DHT technologies

    Measuring And Improving Internet Video Quality Of Experience

    Get PDF
    Streaming multimedia content over the IP-network is poised to be the dominant Internet traffic for the coming decade, predicted to account for more than 91% of all consumer traffic in the coming years. Streaming multimedia content ranges from Internet television (IPTV), video on demand (VoD), peer-to-peer streaming, and 3D television over IP to name a few. Widespread acceptance, growth, and subscriber retention are contingent upon network providers assuring superior Quality of Experience (QoE) on top of todays Internet. This work presents the first empirical understanding of Internet’s video-QoE capabilities, and tools and protocols to efficiently infer and improve them. To infer video-QoE at arbitrary nodes in the Internet, we design and implement MintMOS: a lightweight, real-time, noreference framework for capturing perceptual quality. We demonstrate that MintMOS’s projections closely match with subjective surveys in accessing perceptual quality. We use MintMOS to characterize Internet video-QoE both at the link level and end-to-end path level. As an input to our study, we use extensive measurements from a large number of Internet paths obtained from various measurement overlays deployed using PlanetLab. Link level degradations of intra– and inter–ISP Internet links are studied to create an empirical understanding of their shortcomings and ways to overcome them. Our studies show that intra–ISP links are often poorly engineered compared to peering links, and that iii degradations are induced due to transient network load imbalance within an ISP. Initial results also indicate that overlay networks could be a promising way to avoid such ISPs in times of degradations. A large number of end-to-end Internet paths are probed and we measure delay, jitter, and loss rates. The measurement data is analyzed offline to identify ways to enable a source to select alternate paths in an overlay network to improve video-QoE, without the need for background monitoring or apriori knowledge of path characteristics. We establish that for any unstructured overlay of N nodes, it is sufficient to reroute key frames using a random subset of k nodes in the overlay, where k is bounded by O(lnN). We analyze various properties of such random subsets to derive simple, scalable, and an efficient path selection strategy that results in a k-fold increase in path options for any source-destination pair; options that consistently outperform Internet path selection. Finally, we design a prototype called source initiated frame restoration (SIFR) that employs random subsets to derive alternate paths and demonstrate its effectiveness in improving Internet video-QoE

    Towards a fully mobile publish/subscribe system

    Get PDF
    93 p.This PhD thesis makes contributions to support mobility and fault tolerance in a publish/subscribe system. Two protocols are proposed in order to support mobility of all devices in the system, including inside the event notification service. The protocols are designed with the idea that any change due to mobility is completely beyond our control and ability to predict. Moreover, the proposed solutions do not need to know neither the amount of nodes in the system nor their identities before starting, the system is able to adapt to new devices or disconnections and is able to keep operating correctly in a partitioned network. To do so we extend a previously proposed framework called Phoenix that already supported client mobility. Both protocols use a leader election mechanism to create a communication tree in a highly dynamic environment, and use a characteristic of that algorithm to detect topology changes and migrate nodes accordingly

    Mesh-Mon: a Monitoring and Management System for Wireless Mesh Networks

    Get PDF
    A mesh network is a network of wireless routers that employ multi-hop routing and can be used to provide network access for mobile clients. Mobile mesh networks can be deployed rapidly to provide an alternate communication infrastructure for emergency response operations in areas with limited or damaged infrastructure. In this dissertation, we present Dart-Mesh: a Linux-based layer-3 dual-radio two-tiered mesh network that provides complete 802.11b coverage in the Sudikoff Lab for Computer Science at Dartmouth College. We faced several challenges in building, testing, monitoring and managing this network. These challenges motivated us to design and implement Mesh-Mon, a network monitoring system to aid system administrators in the management of a mobile mesh network. Mesh-Mon is a scalable, distributed and decentralized management system in which mesh nodes cooperate in a proactive manner to help detect, diagnose and resolve network problems automatically. Mesh-Mon is independent of the routing protocol used by the mesh routing layer and can function even if the routing protocol fails. We demonstrate this feature by running Mesh-Mon on two versions of Dart-Mesh, one running on AODV (a reactive mesh routing protocol) and the second running on OLSR (a proactive mesh routing protocol) in separate experiments. Mobility can cause links to break, leading to disconnected partitions. We identify critical nodes in the network, whose failure may cause a partition. We introduce two new metrics based on social-network analysis: the Localized Bridging Centrality (LBC) metric and the Localized Load-aware Bridging Centrality (LLBC) metric, that can identify critical nodes efficiently and in a fully distributed manner. We run a monitoring component on client nodes, called Mesh-Mon-Ami, which also assists Mesh-Mon nodes in the dissemination of management information between physically disconnected partitions, by acting as carriers for management data. We conclude, from our experimental evaluation on our 16-node Dart-Mesh testbed, that our system solves several management challenges in a scalable manner, and is a useful and effective tool for monitoring and managing real-world mesh networks

    Static Web content distribution and request routing in a P2P overlay

    Get PDF
    The significance of collaboration over the Internet has become a corner-stone of modern computing, as the essence of information processing and content management has shifted to networked and Webbased systems. As a result, the effective and reliable access to networked resources has become a critical commodity in any modern infrastructure. In order to cope with the limitations introduced by the traditional client-server networking model, most of the popular Web-based services have employed separate Content Delivery Networks (CDN) to distribute the server-side resource consumption. Since the Web applications are often latency-critical, the CDNs are additionally being adopted for optimizing the content delivery latencies perceived by the Web clients. Because of the prevalent connection model, the Web content delivery has grown to a notable industry. The rapid growth in the amount of mobile devices further contributes to the amount of resources required from the originating server, as the content is also accessible on the go. While the Web has become one of the most utilized sources of information and digital content, the openness of the Internet is simultaneously being reduced by organizations and governments preventing access to any undesired resources. The access to information may be regulated or altered to suit any political interests or organizational benefits, thus conflicting with the initial design principle of an unrestricted and independent information network. This thesis contributes to the development of more efficient and open Internet by combining a feasibility study and a preliminary design of a peer-to-peer based Web content distribution and request routing mechanism. The suggested design addresses both the challenges related to effectiveness of current client-server networking model and the openness of information distributed over the Internet. Based on the properties of existing peer-to-peer implementations, the suggested overlay design is intended to provide low-latency access to any Web content without sacrificing the end-user privacy. The overlay is additionally designed to increase the cost of censorship by forcing a successful blockade to isolate the censored network from the rest of the Internet

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    • …
    corecore