948 research outputs found

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    Modeling, Executing and Monitoring IoT-Driven Business Rules in BPMN and DMN: Current Support and Challenges

    Get PDF
    The involvement of the Internet of Things (IoT) in Business Process Management (BPM) solutions is continuously increasing. While BPM enables the modeling, implementation, execution, monitoring, and analysis of business processes, IoT fosters the collection and exchange of data over the Internet. By enriching BPM solutions with real-world IoT data both process automation and process monitoring can be improved. Furthermore, IoT data can be utilized during process execution to realize IoT-driven business rules that consider the state of the physical environment. The aggregation of low-level IoT data into processrelevant, high-level IoT data is a paramount step towards IoT-driven business processes and business rules respectively. In this context, Business Process Modeling and Notation (BPMN) and Decision Model and Notation (DMN) provide support to model, execute, and monitor IoTdriven business rules, but some challenges remain. This paper derives the challenges that emerge when modeling, executing, and monitoring IoT-driven business rules using BPMN 2.0 and DMN standards

    Smart Buildings IoT Networks Accuracy Evolution Prediction to Improve Their Reliability Using a Lotka–Volterra Ecosystem Model

    Get PDF
    Internet of Things (IoT) is the paradigm that has largely contributed to the development of smart buildings in our society. This technology makes it possible to monitor all aspects of the smart building and to improve its operation. One of the main challenges encountered by IoT networks is that the the data they collect may be unreliable since IoT devices can lose accuracy for several reasons (sensor wear, sensor aging, poorly constructed buildings, etc.). The aim of our work is to study the evolution of IoT networks over time in smart buildings. The hypothesis we have tested is that, by amplifying the Lotka–Volterra equations as a community of living organisms (an ecosystem model), the reliability of the system and its components can be predicted. This model comprises a set of differential equations that describe the relationship between an IoT network and multiple IoT devices. Based on the Lotka–Volterra model, in this article, we propose a model in which the predators are the non-precision IoT devices and the prey are the precision IoT devices. Furthermore, a third species is introduced, the maintenance staff, which will impact the interaction between both species, helping the prey to survive within the ecosystem. This is the first Lotka–Volterra model that is applied in the field of IoT. Our work establishes a proof of concept in the field and opens a wide spectrum of applications for biology models to be applied in IoT.This paper has been partially supported by the Salamanca Ciudad de Cultura y Saberes Foundation under the Talent Attraction Program (CHROMOSOME project)

    Proactive extraction of IoT device capabilities for security applications

    Get PDF
    2020 Spring.Includes bibliographical references.Internet of Things (IoT) device adoption is on the rise. Such devices are mostly self-operated and require minimum user interventions. This is achieved by abstracting away their design complexities and functionalities from users. However, this abstraction significantly limits a user's insights on evaluating the true capabilities (i.e., what actions a device can perform) of a device and hence, its potential security and privacy threats. Most existing works evaluate the security of those devices by analyzing the environment data (e.g., network traffic, sensor data, etc.). However, such approaches entail collecting data from encrypted traffic, relying on the quality of the collected data for their accuracy, and facing difficulties in preserving both utility and privacy of the data. We overcome the above-mentioned challenges and propose a proactive approach to extract IoT device capabilities from their informational specifications to verify their potential threats, even before a device is installed. More specifically, we first introduce a model for device capabilities in the context of IoT. Second, we devise a technique to parse the vendor-provided materials of IoT devices and enumerate device capabilities from them. Finally, we apply the obtained capability model and extraction technique in a proactive access control model to demonstrate the applicability of our proposed solution. We evaluate our capability extraction approach in terms of its efficiency and enumeration accuracy on devices from three different vendors

    Detection of Anomalous Behavior of IoT/CPS Devices Using Their Power Signals

    Get PDF
    Embedded computing devices, in the Internet of Things (IoT) or Cyber-Physical Systems (CPS), are becoming pervasive in many domains around the world. Their wide deployment in simple applications (e.g., smart buildings, fleet management, and smart agriculture) or in more critical operations (e.g., industrial control, smart power grids, and self-driving cars) creates significant market potential ($ 4-11 trillion in annual revenue is expected by 2025). A main requirement for the success of such systems and applications is the capacity to ensure the performance of these devices. This task includes equipping them to be resilient against security threats and failures. Globally, several critical infrastructure applications have been the target of cyber attacks. These recent incidents, as well as the rich applicable literature, confirm that more research is needed to overcome such challenges. Consequently, the need for robust approaches that detect anomalous behaving devices in security and safety-critical applications has become paramount. Solving such a problem minimizes different kinds of losses (e.g., confidential data theft, financial loss, service access restriction, or even casualties). In light of the aforementioned motivation and discussion, this thesis focuses on the problem of detecting the anomalous behavior of IoT/CPS devices by considering their side-channel information. Solving such a problem is extremely important in maintaining the security and dependability of critical systems and applications. Although several side-channel based approaches are found in the literature, there are still important research gaps that need to be addressed. First, the intrusive nature of the monitoring in some of the proposed techniques results in resources overhead and requires instrumentation of the internal components of a device, which makes them impractical. It also raises a data integrity flag. Second, the lack of realistic experimental power consumption datasets that reflect the normal and anomalous behaviors of IoT and CPS devices has prevented fair and coherent comparisons with the state of the art in this domain. Finally, most of the research to date has concentrated on the accuracy of detection and not the novelty of detecting new anomalies. Such a direction relies on: (i) the availability of labeled datasets; (ii) the complexity of the extracted features; and (iii) the available compute resources. These assumptions and requirements are usually unrealistic and unrepresentative. This research aims to bridge these gaps as follows. First, this study extends the state of the art that adopts the idea of leveraging the power consumption of devices as a signal and the concept of decoupling the monitoring system and the devices to be monitored to detect and classify the "operational health'' of the devices. Second, this thesis provides and builds power consumption-based datasets that can be utilized by AI as well as security research communities to validate newly developed detection techniques. The collected datasets cover a wide range of anomalous device behavior due to the main aspects of device security (i.e., confidentiality, integrity, and availability) and partial system failures. The extensive experiments include: a wide spectrum of various emulated malware scenarios; five real malware applications taken from the well-known Drebin dataset; distributed denial of service attack (DDOS) where an IoT device is treated as: (1) a victim of a DDOS attack, and (2) the source of a DDOS attack; cryptomining malware where the resources of an IoT device are being hijacked to be used to advantage of the attacker’s wish and desire; and faulty CPU cores. This level of extensive validation has not yet been reported in any study in the literature. Third, this research presents a novel supervised technique to detect anomalous device behavior based on transforming the problem into an image classification problem. The main aim of this methodology is to improve the detection performance. In order to achieve the goals of this study, the methodology combines two powerful computer vision tools, namely Histograms of Oriented Gradients (HOG) and a Convolutional Neural Network (CNN). Such a detection technique is not only useful in this present case but can contribute to most time-series classification (TSC) problems. Finally, this thesis proposes a novel unsupervised detection technique that requires only the normal behavior of a device in the training phase. Therefore, this methodology aims at detecting new/unseen anomalous behavior. The methodology leverages the power consumption of a device and Restricted Boltzmann Machine (RBM) AutoEncoders (AE) to build a model that makes them more robust to the presence of security threats. The methodology makes use of stacked RBM AE and Principal Component Analysis (PCA) to extract feature vector based on AE's reconstruction errors. A One-Class Support Vector Machine (OC-SVM) classifier is then trained to perform the detection task. Across 18 different datasets, both of our proposed detection techniques demonstrated high detection performance with at least ~ 88% accuracy and 85% F-Score on average. The empirical results indicate the effectiveness of the proposed techniques and demonstrated improved detection performance gain of 9% - 17% over results reported in other methods

    A Survey on Behavioral Pattern Mining from Sensor Data in Internet of Things

    Get PDF
    The deployment of large-scale wireless sensor networks (WSNs) for the Internet of Things (IoT) applications is increasing day-by-day, especially with the emergence of smart city services. The sensor data streams generated from these applications are largely dynamic, heterogeneous, and often geographically distributed over large areas. For high-value use in business, industry and services, these data streams must be mined to extract insightful knowledge, such as about monitoring (e.g., discovering certain behaviors over a deployed area) or network diagnostics (e.g., predicting faulty sensor nodes). However, due to the inherent constraints of sensor networks and application requirements, traditional data mining techniques cannot be directly used to mine IoT data streams efficiently and accurately in real-time. In the last decade, a number of works have been reported in the literature proposing behavioral pattern mining algorithms for sensor networks. This paper presents the technical challenges that need to be considered for mining sensor data. It then provides a thorough review of the mining techniques proposed in the recent literature to mine behavioral patterns from sensor data in IoT, and their characteristics and differences are highlighted and compared. We also propose a behavioral pattern mining framework for IoT and discuss possible future research directions in this area. © 2013 IEEE

    Advanced Security Analysis for Emergent Software Platforms

    Get PDF
    Emergent software ecosystems, boomed by the advent of smartphones and the Internet of Things (IoT) platforms, are perpetually sophisticated, deployed into highly dynamic environments, and facilitating interactions across heterogeneous domains. Accordingly, assessing the security thereof is a pressing need, yet requires high levels of scalability and reliability to handle the dynamism involved in such volatile ecosystems. This dissertation seeks to enhance conventional security detection methods to cope with the emergent features of contemporary software ecosystems. In particular, it analyzes the security of Android and IoT ecosystems by developing rigorous vulnerability detection methods. A critical aspect of this work is the focus on detecting vulnerable and unsafe interactions between applications that share common components and devices. Contributions of this work include novel insights and methods for: (1) detecting vulnerable interactions between Android applications that leverage dynamic loading features for concealing the interactions; (2) identifying unsafe interactions between smart home applications by considering physical and cyber channels; (3) detecting malicious IoT applications that are developed to target numerous IoT devices; (4) detecting insecure patterns of emergent security APIs that are reused from open-source software. In all of the four research thrusts, we present thorough security analysis and extensive evaluations based on real-world applications. Our results demonstrate that the proposed detection mechanisms can efficiently and effectively detect vulnerabilities in contemporary software platforms. Advisers: Hamid Bagheri and Qiben Ya
    corecore