42,707 research outputs found

    A TOPIC SENSITIVE SIMRANK (TSSR) MODEL FOR EXPERTS FINDING ON ONLINE RESEARCH SOCIAL PLATFORMS

    Get PDF
    As an efficient online academic information repository and information channel with crowdsā€™ contribution, online research social platforms have become an efficient tool for various kinds of research & management applications. Social network platforms have also become a major source to seek for field experts. They have advantages of crowd contributions, easy to access without geographic restrictions and avoiding conflict of interests over traditional database and search engine based approaches. However, current research attempts to find experts based on features such as published research work, social relationships, and online behaviours (e.g. reads and downloads of publications) on social platforms, they ignore to verify the reliability of identified experts. To bridge this gap, this research proposes an innovative Topic Sensitive SimRank (TSSR) model to identify ā€œrealā€ experts on social network platforms. TSSR model includes three components: LDA for Expertise Extension, Topic Sensitive Network for Reputation Measurement, and Topic Sensitive SimRank for unsuitable experts detection. We also design a parallel computing strategy to improve the efficiency of the proposed methods. Last, to verify the effectiveness of the proposed model, we design an experiment on one of the research social platforms-ScholarMate to seek for experts for companies that need academic-industry collaboration

    Methodologies for the Automatic Location of Academic and Educational Texts on the Internet

    Get PDF
    Traditionally online databases of web resources have been compiled by a human editor, or though the submissions of authors or interested parties. Considerable resources are needed to maintain a constant level of input and relevance in the face of increasing material quantity and quality, and much of what is in databases is of an ephemeral nature. These pressures dictate that many databases stagnate after an initial period of enthusiastic data entry. The solution to this problem would seem to be the automatic harvesting of resources, however, this process necessitates the automatic classification of resources as ā€˜appropriateā€™ to a given database, a problem only solved by complex text content analysis. This paper outlines the component methodologies necessary to construct such an automated harvesting system, including a number of novel approaches. In particular this paper looks at the specific problems of automatically identifying academic research work and Higher Education pedagogic materials. Where appropriate, experimental data is presented from searches in the field of Geography as well as the Earth and Environmental Sciences. In addition, appropriate software is reviewed where it exists, and future directions are outlined

    Methodologies for the Automatic Location of Academic and Educational Texts on the Internet

    Get PDF
    Traditionally online databases of web resources have been compiled by a human editor, or though the submissions of authors or interested parties. Considerable resources are needed to maintain a constant level of input and relevance in the face of increasing material quantity and quality, and much of what is in databases is of an ephemeral nature. These pressures dictate that many databases stagnate after an initial period of enthusiastic data entry. The solution to this problem would seem to be the automatic harvesting of resources, however, this process necessitates the automatic classification of resources as ā€˜appropriateā€™ to a given database, a problem only solved by complex text content analysis. This paper outlines the component methodologies necessary to construct such an automated harvesting system, including a number of novel approaches. In particular this paper looks at the specific problems of automatically identifying academic research work and Higher Education pedagogic materials. Where appropriate, experimental data is presented from searches in the field of Geography as well as the Earth and Environmental Sciences. In addition, appropriate software is reviewed where it exists, and future directions are outlined

    Learning to Rank Academic Experts in the DBLP Dataset

    Full text link
    Expert finding is an information retrieval task that is concerned with the search for the most knowledgeable people with respect to a specific topic, and the search is based on documents that describe people's activities. The task involves taking a user query as input and returning a list of people who are sorted by their level of expertise with respect to the user query. Despite recent interest in the area, the current state-of-the-art techniques lack in principled approaches for optimally combining different sources of evidence. This article proposes two frameworks for combining multiple estimators of expertise. These estimators are derived from textual contents, from graph-structure of the citation patterns for the community of experts, and from profile information about the experts. More specifically, this article explores the use of supervised learning to rank methods, as well as rank aggregation approaches, for combing all of the estimators of expertise. Several supervised learning algorithms, which are representative of the pointwise, pairwise and listwise approaches, were tested, and various state-of-the-art data fusion techniques were also explored for the rank aggregation framework. Experiments that were performed on a dataset of academic publications from the Computer Science domain attest the adequacy of the proposed approaches.Comment: Expert Systems, 2013. arXiv admin note: text overlap with arXiv:1302.041
    • ā€¦
    corecore