92 research outputs found

    INRISCO: INcident monitoRing in Smart COmmunities

    Get PDF
    Major advances in information and communication technologies (ICTs) make citizens to be considered as sensors in motion. Carrying their mobile devices, moving in their connected vehicles or actively participating in social networks, citizens provide a wealth of information that, after properly processing, can support numerous applications for the benefit of the community. In the context of smart communities, the INRISCO [1] proposal intends for (i) the early detection of abnormal situations in cities (i.e., incidents), (ii) the analysis of whether, according to their impact, those incidents are really adverse for the community; and (iii) the automatic actuation by dissemination of appropriate information to citizens and authorities. Thus, INRISCO will identify and report on incidents in traffic (jam, accident) or public infrastructure (e.g., works, street cut), the occurrence of specific events that affect other citizens' life (e.g., demonstrations, concerts), or environmental problems (e.g., pollution, bad weather). It is of particular interest to this proposal the identification of incidents with a social and economic impact, which affects the quality of life of citizens.This work was supported in part by the Spanish Government through the projects INRISCO under Grant TEC2014-54335-C4-1-R, Grant TEC2014-54335-C4-2-R, Grant TEC2014-54335-C4-3-R, and Grant TEC2014-54335-C4-4-R, in part by the MAGOS under Grant TEC2017-84197-C4-1-R, Grant TEC2017-84197-C4-2-R, and Grant TEC2017-84197-C4-3-R, in part by the European Regional Development Fund (ERDF), and in part by the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC)

    An overview of VANET vehicular networks

    Full text link
    Today, with the development of intercity and metropolitan roadways and with various cars moving in various directions, there is a greater need than ever for a network to coordinate commutes. Nowadays, people spend a lot of time in their vehicles. Smart automobiles have developed to make that time safer, more effective, more fun, pollution-free, and affordable. However, maintaining the optimum use of resources and addressing rising needs continues to be a challenge given the popularity of vehicle users and the growing diversity of requests for various services. As a result, VANET will require modernized working practices in the future. Modern intelligent transportation management and driver assistance systems are created using cutting-edge communication technology. Vehicular Ad-hoc networks promise to increase transportation effectiveness, accident prevention, and pedestrian comfort by allowing automobiles and road infrastructure to communicate entertainment and traffic information. By constructing thorough frameworks, workflow patterns, and update procedures, including block-chain, artificial intelligence, and SDN (Software Defined Networking), this paper addresses VANET-related technologies, future advances, and related challenges. An overview of the VANET upgrade solution is given in this document in order to handle potential future problems

    A holistic framework to improve message delivery in vehicular ad-hoc networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are wireless communication networks for vehicles that do not require any fixed or central infrastructure. It forms an important part of the intelligent transport system (ITS) which is the convergence of telecommunications, computing and wireless systems with the aim of improving transportation regarding efficiency, safety and management. In addition to the uses of ITS, VANETs will contribute in service access, cooperative driving, entertainment and navigation for cars of the future. Due to the varied use of VANETs, it becomes slightly cumbersome having a "one-fits-all" solution to challenges facing message dissemination in VANETs. While some applications might require a fast and reliable way of disseminating messages amongst members of the network, other applications might be more delay-tolerant without adding extra risks to the dependents of such application. Data dissemination methods are therefore important aspects of VANET that ensure messages are delivered to areas beyond the scope of the originating node. However, several types of research have shown that message propagation for each geographical route is unique to that route, owing to the number of network participants, their speed, and distribution of objects on that route. Many research designs do not consider the vehicles and their traffic characteristics and as such vehicular ad-hoc networks are under-utilised. One of the problems present in the emerging field of vehicular communications is that of optimally disseminating messages within the network to support services such as collision warnings, traffic management, and driverless vehicles amongst others. This problem is a unique research area which involves the entire network and its ability to support the efficient propagation of data. Message dissemination in VANETs could be viewed as routing on much higher macroscopic level, however, the techniques usually applied to data routing on a microscopic level does not utilise available data to efficiently disseminate messages within a vehicular ad-hoc network. Some work done in literature addresses a few constraints at a time; for example a focus on junctions, thereby ignoring vast areas of the wireless network which could have been otherwise used to improve the overall ability to efficiently deliver messages within the road network. For this reason, this thesis investigates the effects of several vehicular factors, how these factors affect the quality of the wireless network on each road, and how this knowledge is advantageous in improving the delivery of messages from a source to its destination within a vehicular ad-hoc network. In proposing a solution that uses otherwise largely ignored road traffic data to improving efficient message delivery, a holistic framework that utilises road traffic information in a unique way is presented. The quality of a wireless network for each road in terms of packets delivered is seen to be influenced by the number of vehicles and their speed which is seen to be unique for each road segment; therefore, allowing the generation of a wireless packet delivery map offline (wireless network map) based on varying number of vehicles and speeds. Current road traffic data can then be compared against the wireless map in order to determine which routes have good network quality and hence the ability to support better message dissemination. This framework is also aimed at helping to fully utilise the VANET bandwidth available by reducing network noise caused by multiple retransmissions of nodes in the network by picking the right path and using only the furthest node on each path. It aims to reduce messages delivery failure, reduce delays in the message delivery where possible and improve the utilisation of vehicles as communication nodes and relays. The Framework for Improving Message Delivery in VANETs (FIMDEV) proposed in this thesis shows the benefit of using the wireless communication database information processed by each vehicle to support message delivery from source to destination within the VANET. Experiments show improved overall packet delivery ratio when compared to standalone routing protocols as FIMDEV uses the wireless network database along with a set of rules for propagating messages within the network
    • …
    corecore