1,530 research outputs found

    Detecting Traffic Problems with ILP

    Full text link
    Expert systems for decision support have recently been successfully introduced in road transport management. In this paper, we apply three state-of-the art ILP systems to learn how to detect traffic problems

    Resource Management in Heterogeneous Wireless Sensor Networks

    Get PDF
    We propose a first approach in the direction of a general framework for resource management in wireless sensor networks (WSN). The basic components of the approach are a model for WSNs and a task model. Based on these models, a first version of an algorithm for assigning tasks to a WSN is presented. The models and the algorithm are designed in such a way that an extension to more complex models is possible. Furthermore, the developed approach to solve the RM problem allows an easy adaptation, to fit more complex models. In this way, a flexible approach is achieved, which may form the base for many RM approaches.\ud The possibilities and limitations of the presented approach are tested on randomly generated instances. The aim of these tests is to show that the chosen models and algorithm form a proper starting point to design RM tools

    Attack-Aware Routing and Wavelength Assignment of Scheduled Lightpath Demands

    Get PDF
    In Transparent Optical Networks, tra c is carried over lightpaths, creating a vir- tual topology over the physical connections of optical bers. Due to the increasingly high data rates and the vulnerabilities related to the transparency of optical network, security issues in transparent wavelength division multiplexing (WDM) optical net- works have become of great signi cance to network managers. In this thesis, we intro- duce some basic concepts of transparent optical network, the types and circumstances of physical-layer attacks and analysis of related work at rst. In addition, based on the previous researches, we present a novel approach and several new objective cri- terions for the problem of attack-aware routing and wavelength assignment. Integer Linear Programming (ILP) formulation is used to solve the routing sub-problem with the objective to minimize the disruption of physical-layer attack as well as to opti- mize Routing and Wavelength Assignment (RWA) of scheduled transparent optical network

    Spatial Coordination Strategies in Future Ultra-Dense Wireless Networks

    Full text link
    Ultra network densification is considered a major trend in the evolution of cellular networks, due to its ability to bring the network closer to the user side and reuse resources to the maximum extent. In this paper we explore spatial resources coordination as a key empowering technology for next generation (5G) ultra-dense networks. We propose an optimization framework for flexibly associating system users with a densely deployed network of access nodes, opting for the exploitation of densification and the control of overhead signaling. Combined with spatial precoding processing strategies, we design network resources management strategies reflecting various features, namely local vs global channel state information knowledge exploitation, centralized vs distributed implementation, and non-cooperative vs joint multi-node data processing. We apply these strategies to future UDN setups, and explore the impact of critical network parameters, that is, the densification levels of users and access nodes as well as the power budget constraints, to users performance. We demonstrate that spatial resources coordination is a key factor for capitalizing on the gains of ultra dense network deployments.Comment: An extended version of a paper submitted to ISWCS'14, Special Session on Empowering Technologies of 5G Wireless Communication

    Content placement in 5G‐enabled edge/core data center networks resilient to link cut attacks

    Get PDF
    High throughput, resilience, and low latency requirements drive the development of 5G-enabled content delivery networks (CDNs) which combine core data centers (cDCs) with edge data centers (eDCs) that cache the most popular content closer to the end users for traffic load and latency reduction. Deployed over the existing optical network infrastructure, CDNs are vulnerable to link cut attacks aimed at disrupting the overlay services. Planning a CDN to balance the stringent service requirements and increase resilience to attacks in a cost-efficient way entails solving the content placement problem (CPP) across the cDCs and eDCs. This article proposes a framework for finding Pareto-optimal solutions with minimal user-to-content distance and maximal robustness to targeted link cuts, under a defined budget. We formulate two optimization problems as integer linear programming (ILP) models. The first, denoted as K-best CPP with minimal distance (K-CPP-minD), identifies the eDC/cDC placement solutions with minimal user-to-content distance. The second performs critical link set detection to evaluate the resilience of the K-CPP-minD solutions to targeted fiber cuts. Extensive simulations verify that the eDC/cDC selection obtained by our models improves network resilience to link cut attacks without adversely affecting the user-to-content distances or the core network traffic mitigation benefits.publishe

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL
    corecore