120 research outputs found

    Recognizing Textual Entailment Using Description Logic And Semantic Relatedness

    Get PDF
    Textual entailment (TE) is a relation that holds between two pieces of text where one reading the first piece can conclude that the second is most likely true. Accurate approaches for textual entailment can be beneficial to various natural language processing (NLP) applications such as: question answering, information extraction, summarization, and even machine translation. For this reason, research on textual entailment has attracted a significant amount of attention in recent years. A robust logical-based meaning representation of text is very hard to build, therefore the majority of textual entailment approaches rely on syntactic methods or shallow semantic alternatives. In addition, approaches that do use a logical-based meaning representation, require a large knowledge base of axioms and inference rules that are rarely available. The goal of this thesis is to design an efficient description logic based approach for recognizing textual entailment that uses semantic relatedness information as an alternative to large knowledge base of axioms and inference rules. In this thesis, we propose a description logic and semantic relatedness approach to textual entailment, where the type of semantic relatedness axioms employed in aligning the description logic representations are used as indicators of textual entailment. In our approach, the text and the hypothesis are first represented in description logic. The representations are enriched with additional semantic knowledge acquired by using the web as a corpus. The hypothesis is then merged into the text representation by learning semantic relatedness axioms on demand and a reasoner is then used to reason over the aligned representation. Finally, the types of axioms employed by the reasoner are used to learn if the text entails the hypothesis or not. To validate our approach we have implemented an RTE system named AORTE, and evaluated its performance on recognizing textual entailment using the fourth recognizing textual entailment challenge. Our approach achieved an accuracy of 68.8 on the two way task and 61.6 on the three way task which ranked the approach as 2nd when compared to the other participating runs in the same challenge. These results show that our description logical based approach can effectively be used to recognize textual entailment

    Computational models for semantic textual similarity

    Get PDF
    164 p.The overarching goal of this thesis is to advance on computational models of meaning and their evaluation. To achieve this goal we define two tasks and develop state-of-the-art systems that tackle both task: Semantic Textual Similarity (STS) and Typed Similarity.STS aims to measure the degree of semantic equivalence between two sentences by assigning graded similarity values that capture the intermediate shades of similarity. We have collected pairs of sentences to construct datasets for STS, a total of 15,436 pairs of sentences, being by far the largest collection of data for STS.We have designed, constructed and evaluated a new approach to combine knowledge-based and corpus-based methods using a cube. This new system for STS is on par with state-of-the-art approaches that make use of Machine Learning (ML) without using any of it, but ML can be used on this system, improving the results.Typed Similarity tries to identify the type of relation that holds between a pair of similar items in a digital library. Providing a reason why items are similar has applications in recommendation, personalization, and search. A range of types of similarity in this collection were identified and a set of 1,500 pairs of items from the collection were annotated using crowdsourcing.Finally, we present systems capable of resolving the Typed Similarity task. The best system resulted in a real-world application to recommend similar items to users in an online digital library

    Exploiting Wikipedia Semantics for Computing Word Associations

    No full text
    Semantic association computation is the process of automatically quantifying the strength of a semantic connection between two textual units based on various lexical and semantic relations such as hyponymy (car and vehicle) and functional associations (bank and manager). Humans have can infer implicit relationships between two textual units based on their knowledge about the world and their ability to reason about that knowledge. Automatically imitating this behavior is limited by restricted knowledge and poor ability to infer hidden relations. Various factors affect the performance of automated approaches to computing semantic association strength. One critical factor is the selection of a suitable knowledge source for extracting knowledge about the implicit semantic relations. In the past few years, semantic association computation approaches have started to exploit web-originated resources as substitutes for conventional lexical semantic resources such as thesauri, machine readable dictionaries and lexical databases. These conventional knowledge sources suffer from limitations such as coverage issues, high construction and maintenance costs and limited availability. To overcome these issues one solution is to use the wisdom of crowds in the form of collaboratively constructed knowledge sources. An excellent example of such knowledge sources is Wikipedia which stores detailed information not only about the concepts themselves but also about various aspects of the relations among concepts. The overall goal of this thesis is to demonstrate that using Wikipedia for computing word association strength yields better estimates of humans' associations than the approaches based on other structured and unstructured knowledge sources. There are two key challenges to achieve this goal: first, to exploit various semantic association models based on different aspects of Wikipedia in developing new measures of semantic associations; and second, to evaluate these measures compared to human performance in a range of tasks. The focus of the thesis is on exploring two aspects of Wikipedia: as a formal knowledge source, and as an informal text corpus. The first contribution of the work included in the thesis is that it effectively exploited the knowledge source aspect of Wikipedia by developing new measures of semantic associations based on Wikipedia hyperlink structure, informative-content of articles and combinations of both elements. It was found that Wikipedia can be effectively used for computing noun-noun similarity. It was also found that a model based on hybrid combinations of Wikipedia structure and informative-content based features performs better than those based on individual features. It was also found that the structure based measures outperformed the informative content based measures on both semantic similarity and semantic relatedness computation tasks. The second contribution of the research work in the thesis is that it effectively exploited the corpus aspect of Wikipedia by developing a new measure of semantic association based on asymmetric word associations. The thesis introduced the concept of asymmetric associations based measure using the idea of directional context inspired by the free word association task. The underlying assumption was that the association strength can change with the changing context. It was found that the asymmetric association based measure performed better than the symmetric measures on semantic association computation, relatedness based word choice and causality detection tasks. However, asymmetric-associations based measures have no advantage for synonymy-based word choice tasks. It was also found that Wikipedia is not a good knowledge source for capturing verb-relations due to its focus on encyclopedic concepts specially nouns. It is hoped that future research will build on the experiments and discussions presented in this thesis to explore new avenues using Wikipedia for finding deeper and semantically more meaningful associations in a wide range of application areas based on humans' estimates of word associations

    Computational models for semantic textual similarity

    Get PDF
    164 p.The overarching goal of this thesis is to advance on computational models of meaning and their evaluation. To achieve this goal we define two tasks and develop state-of-the-art systems that tackle both task: Semantic Textual Similarity (STS) and Typed Similarity.STS aims to measure the degree of semantic equivalence between two sentences by assigning graded similarity values that capture the intermediate shades of similarity. We have collected pairs of sentences to construct datasets for STS, a total of 15,436 pairs of sentences, being by far the largest collection of data for STS.We have designed, constructed and evaluated a new approach to combine knowledge-based and corpus-based methods using a cube. This new system for STS is on par with state-of-the-art approaches that make use of Machine Learning (ML) without using any of it, but ML can be used on this system, improving the results.Typed Similarity tries to identify the type of relation that holds between a pair of similar items in a digital library. Providing a reason why items are similar has applications in recommendation, personalization, and search. A range of types of similarity in this collection were identified and a set of 1,500 pairs of items from the collection were annotated using crowdsourcing.Finally, we present systems capable of resolving the Typed Similarity task. The best system resulted in a real-world application to recommend similar items to users in an online digital library
    • …
    corecore