5,336 research outputs found

    A System for Distributed Mechanisms: Design, Implementation and Applications

    Full text link
    We describe here a structured system for distributed mechanism design appropriate for both Intranet and Internet applications. In our approach the players dynamically form a network in which they know neither their neighbours nor the size of the network and interact to jointly take decisions. The only assumption concerning the underlying communication layer is that for each pair of processes there is a path of neighbours connecting them. This allows us to deal with arbitrary network topologies. We also discuss the implementation of this system which consists of a sequence of layers. The lower layers deal with the operations that implement the basic primitives of distributed computing, namely low level communication and distributed termination, while the upper layers use these primitives to implement high level communication among players, including broadcasting and multicasting, and distributed decision making. This yields a highly flexible distributed system whose specific applications are realized as instances of its top layer. This design is implemented in Java. The system supports at various levels fault-tolerance and includes a provision for distributed policing the purpose of which is to exclude `dishonest' players. Also, it can be used for repeated creation of dynamically formed networks of players interested in a joint decision making implemented by means of a tax-based mechanism. We illustrate its flexibility by discussing a number of implemented examples.Comment: 36 pages; revised and expanded versio

    Revisiting credit distribution algorithms for distributed termination detection

    Get PDF
    This paper revisits distributed termination detection algorithms in the context of High-Performance Computing (HPC) applications. We introduce an efficient variant of the Credit Distribution Algorithm (CDA) and compare it to the original algorithm (HCDA) as well as to its two primary competitors: the Four Counters algorithm (4C) and the Efficient Delay-Optimal Distributed algorithm (EDOD). We analyze the behavior of each algorithm for some simplified task-based kernels and show the superiority of CDA in terms of the number of control messages.Peer ReviewedPostprint (author's final draft

    A Web Aggregation Approach for Distributed Randomized PageRank Algorithms

    Full text link
    The PageRank algorithm employed at Google assigns a measure of importance to each web page for rankings in search results. In our recent papers, we have proposed a distributed randomized approach for this algorithm, where web pages are treated as agents computing their own PageRank by communicating with linked pages. This paper builds upon this approach to reduce the computation and communication loads for the algorithms. In particular, we develop a method to systematically aggregate the web pages into groups by exploiting the sparsity inherent in the web. For each group, an aggregated PageRank value is computed, which can then be distributed among the group members. We provide a distributed update scheme for the aggregated PageRank along with an analysis on its convergence properties. The method is especially motivated by results on singular perturbation techniques for large-scale Markov chains and multi-agent consensus.Comment: To appear in the IEEE Transactions on Automatic Control, 201

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    Local Maps: New Insights into Mobile Agent Algorithms

    Get PDF
    In this paper, we study the complexity of computing with mobile agents having small local knowledge. In particular, we show that the number of mobile agents and the amount of local information given initially to agents can significantly influence the time complexity of resolving a distributed problem. Our results are based on a generic scheme allowing to transform a message passing algorithm, running on an nn-node graph GG, into a mobile agent one. By generic, we mean that the scheme is independent of both the message passing algorithm and the graph GG. Our scheme, coupled with a well-chosen clustered representation of the graph, induces O~(1)ratiobetweenthetimecomplexityoftheobtainedmobileagentalgorithmandthetimecomplexityoftheoriginalmessagepassingcounterpart,whileusing\widetilde{O}(1) ratio between the time complexity of the obtained mobile agent algorithm and the time complexity of the original message passing counterpart, while using \widetilde{O}(n)mobileagents.Ifonly mobile agents. If only kagentsareallowed( agents are allowed (kisanintegerparameter),thenweshowthatthetimeratiois is an integer parameter), then we show that the time ratio is O(n/\sqrt{k}).Asaconsequence,weshowthatanygloballabelingfunctionof. As a consequence, we show that any global labeling function of Gcanbecomputedbyexactly can be computed by exactly nmobileagentsknowingtheir mobile agents knowing their n^{\epsilon}neighborhoodin-neighborhood in \widetilde{O}(D)time, time, Disthediameterofthegraphand is the diameter of the graph and \epsilonisanarbitrarysmallconstant.Weapplyourgenericresultsforthefundamentalproblemofcomputingaleader(resp.aBFStree)undertheadditionalrestrictionof is an arbitrary small constant. We apply our generic results for the fundamental problem of computing a leader (resp. a BFS tree) under the additional restriction of \widetilde{O}(1)(resp. (resp. \widetilde{O}(n))memorybitsperagent,andobtain) memory bits per agent, and obtain \widetilde{O}(D)$ time algorithms
    corecore