4,677 research outputs found

    Pristup specifikaciji i generisanju proizvodnih procesa zasnovan na inženjerstvu vođenom modelima

    Get PDF
    In this thesis, we present an approach to the production process specification and generation based on the model-driven paradigm, with the goal to increase the flexibility of factories and respond to the challenges that emerged in the era of Industry 4.0 more efficiently. To formally specify production processes and their variations in the Industry 4.0 environment, we created a novel domain-specific modeling language, whose models are machine-readable. The created language can be used to model production processes that can be independent of any production system, enabling process models to be used in different production systems, and process models used for the specific production system. To automatically transform production process models dependent on the specific production system into instructions that are to be executed by production system resources, we created an instruction generator. Also, we created generators for different manufacturing documentation, which automatically transform production process models into manufacturing documents of different types. The proposed approach, domain-specific modeling language, and software solution contribute to introducing factories into the digital transformation process. As factories must rapidly adapt to new products and their variations in the era of Industry 4.0, production must be dynamically led and instructions must be automatically sent to factory resources, depending on products that are to be created on the shop floor. The proposed approach contributes to the creation of such a dynamic environment in contemporary factories, as it allows to automatically generate instructions from process models and send them to resources for execution. Additionally, as there are numerous different products and their variations, keeping the required manufacturing documentation up to date becomes challenging, which can be done automatically by using the proposed approach and thus significantly lower process designers' time.У овој дисертацији представљен је приступ спецификацији и генерисању производних процеса заснован на инжењерству вођеном моделима, у циљу повећања флексибилности постројења у фабрикама и ефикаснијег разрешавања изазова који се појављују у ери Индустрије 4.0. За потребе формалне спецификације производних процеса и њихових варијација у амбијенту Индустрије 4.0, креиран је нови наменски језик, чије моделе рачунар може да обради на аутоматизован начин. Креирани језик има могућност моделовања производних процеса који могу бити независни од производних система и тиме употребљени у различитим постројењима или фабрикама, али и производних процеса који су специфични за одређени систем. Како би моделе производних процеса зависних од конкретног производног система било могуће на аутоматизован начин трансформисати у инструкције које ресурси производног система извршавају, креиран је генератор инструкција. Такође су креирани и генератори техничке документације, који на аутоматизован начин трансформишу моделе производних процеса у документе различитих типова. Употребом предложеног приступа, наменског језика и софтверског решења доприноси се увођењу фабрика у процес дигиталне трансформације. Како фабрике у ери Индустрије 4.0 морају брзо да се прилагоде новим производима и њиховим варијацијама, неопходно је динамички водити производњу и на аутоматизован начин слати инструкције ресурсима у фабрици, у зависности од производа који се креирају у конкретном постројењу. Тиме што је у предложеном приступу могуће из модела процеса аутоматизовано генерисати инструкције и послати их ресурсима, доприноси се креирању једног динамичког окружења у савременим фабрикама. Додатно, услед великог броја различитих производа и њихових варијација, постаје изазовно одржавати неопходну техничку документацију, што је у предложеном приступу могуће урадити на аутоматизован начин и тиме значајно уштедети време пројектаната процеса.U ovoj disertaciji predstavljen je pristup specifikaciji i generisanju proizvodnih procesa zasnovan na inženjerstvu vođenom modelima, u cilju povećanja fleksibilnosti postrojenja u fabrikama i efikasnijeg razrešavanja izazova koji se pojavljuju u eri Industrije 4.0. Za potrebe formalne specifikacije proizvodnih procesa i njihovih varijacija u ambijentu Industrije 4.0, kreiran je novi namenski jezik, čije modele računar može da obradi na automatizovan način. Kreirani jezik ima mogućnost modelovanja proizvodnih procesa koji mogu biti nezavisni od proizvodnih sistema i time upotrebljeni u različitim postrojenjima ili fabrikama, ali i proizvodnih procesa koji su specifični za određeni sistem. Kako bi modele proizvodnih procesa zavisnih od konkretnog proizvodnog sistema bilo moguće na automatizovan način transformisati u instrukcije koje resursi proizvodnog sistema izvršavaju, kreiran je generator instrukcija. Takođe su kreirani i generatori tehničke dokumentacije, koji na automatizovan način transformišu modele proizvodnih procesa u dokumente različitih tipova. Upotrebom predloženog pristupa, namenskog jezika i softverskog rešenja doprinosi se uvođenju fabrika u proces digitalne transformacije. Kako fabrike u eri Industrije 4.0 moraju brzo da se prilagode novim proizvodima i njihovim varijacijama, neophodno je dinamički voditi proizvodnju i na automatizovan način slati instrukcije resursima u fabrici, u zavisnosti od proizvoda koji se kreiraju u konkretnom postrojenju. Time što je u predloženom pristupu moguće iz modela procesa automatizovano generisati instrukcije i poslati ih resursima, doprinosi se kreiranju jednog dinamičkog okruženja u savremenim fabrikama. Dodatno, usled velikog broja različitih proizvoda i njihovih varijacija, postaje izazovno održavati neophodnu tehničku dokumentaciju, što je u predloženom pristupu moguće uraditi na automatizovan način i time značajno uštedeti vreme projektanata procesa

    A clinical decision support system for detecting and mitigating potentially inappropriate medications

    Get PDF
    Background: Medication errors are a leading cause of preventable harm to patients. In older adults, the impact of ageing on the therapeutic effectiveness and safety of drugs is a significant concern, especially for those over 65. Consequently, certain medications called Potentially Inappropriate Medications (PIMs) can be dangerous in the elderly and should be avoided. Tackling PIMs by health professionals and patients can be time-consuming and error-prone, as the criteria underlying the definition of PIMs are complex and subject to frequent updates. Moreover, the criteria are not available in a representation that health systems can interpret and reason with directly. Objectives: This thesis aims to demonstrate the feasibility of using an ontology/rule-based approach in a clinical knowledge base to identify potentially inappropriate medication(PIM). In addition, how constraint solvers can be used effectively to suggest alternative medications and administration schedules to solve or minimise PIM undesirable side effects. Methodology: To address these objectives, we propose a novel integrated approach using formal rules to represent the PIMs criteria and inference engines to perform the reasoning presented in the context of a Clinical Decision Support System (CDSS). The approach aims to detect, solve, or minimise undesirable side-effects of PIMs through an ontology (knowledge base) and inference engines incorporating multiple reasoning approaches. Contributions: The main contribution lies in the framework to formalise PIMs, including the steps required to define guideline requisites to create inference rules to detect and propose alternative drugs to inappropriate medications. No formalisation of the selected guideline (Beers Criteria) can be found in the literature, and hence, this thesis provides a novel ontology for it. Moreover, our process of minimising undesirable side effects offers a novel approach that enhances and optimises the drug rescheduling process, providing a more accurate way to minimise the effect of drug interactions in clinical practice

    Breaking Virtual Barriers : Investigating Virtual Reality for Enhanced Educational Engagement

    Get PDF
    Virtual reality (VR) is an innovative technology that has regained popularity in recent years. In the field of education, VR has been introduced as a tool to enhance learning experiences. This thesis presents an exploration of how VR is used from the context of educators and learners. The research employed a mixed-methods approach, including surveying and interviewing educators, and conducting empirical studies to examine engagement, usability, and user behaviour within VR. The results revealed educators are interested in using VR for a wide range of scenarios, including thought exercises, virtual field trips, and simulations. However, they face several barriers to incorporating VR into their practice, such as cost, lack of training, and technical challenges. A subsequent study found that virtual reality can no longer be assumed to be more engaging than desktop equivalents. This empirical study showed that engagement levels were similar in both VR and non-VR environments, suggesting that the novelty effect of VR may be less pronounced than previously assumed. A study against a VR mind mapping artifact, VERITAS, demonstrated that complex interactions are possible on low-cost VR devices, making VR accessible to educators and students. The analysis of user behaviour within this VR artifact showed that quantifiable strategies emerge, contributing to the understanding of how to design for collaborative VR experiences. This thesis provides insights into how the end-users in the education space perceive and use VR. The findings suggest that while educators are interested in using VR, they face barriers to adoption. The research highlights the need to design VR experiences, with understanding of existing pedagogy, that are engaging with careful thought applied to complex interactions, particularly for collaborative experiences. This research contributes to the understanding of the potential of VR in education and provides recommendations for educators and designers to enhance learning experiences using VR

    Complete and easy type Inference for first-class polymorphism

    Get PDF
    The Hindley-Milner (HM) typing discipline is remarkable in that it allows statically typing programs without requiring the programmer to annotate programs with types themselves. This is due to the HM system offering complete type inference, meaning that if a program is well typed, the inference algorithm is able to determine all the necessary typing information. Let bindings implicitly perform generalisation, allowing a let-bound variable to receive the most general possible type, which in turn may be instantiated appropriately at each of the variable’s use sites. As a result, the HM type system has since become the foundation for type inference in programming languages such as Haskell as well as the ML family of languages and has been extended in a multitude of ways. The original HM system only supports prenex polymorphism, where type variables are universally quantified only at the outermost level. This precludes many useful programs, such as passing a data structure to a function in the form of a fold function, which would need to be polymorphic in the type of the accumulator. However, this would require a nested quantifier in the type of the overall function. As a result, one direction of extending the HM system is to add support for first-class polymorphism, allowing arbitrarily nested quantifiers and instantiating type variables with polymorphic types. In such systems, restrictions are necessary to retain decidability of type inference. This work presents FreezeML, a novel approach for integrating first-class polymorphism into the HM system, focused on simplicity. It eschews sophisticated yet hard to grasp heuristics in the type systems or extending the language of types, while still requiring only modest amounts of annotations. In particular, FreezeML leverages the mechanisms for generalisation and instantiation that are already at the heart of ML. Generalisation and instantiation are performed by let bindings and variables, respectively, but extended to types beyond prenex polymorphism. The defining feature of FreezeML is the ability to freeze variables, which prevents the usual instantiation of their types, allowing them instead to keep their original, fully polymorphic types. We demonstrate that FreezeML is as expressive as System F by providing a translation from the latter to the former; the reverse direction is also shown. Further, we prove that FreezeML is indeed a conservative extension of ML: When considering only ML programs, FreezeML accepts exactly the same programs as ML itself. # We show that type inference for FreezeML can easily be integrated into HM-like type systems by presenting a sound and complete inference algorithm for FreezeML that extends Algorithm W, the original inference algorithm for the HM system. Since the inception of Algorithm W in the 1970s, type inference for the HM system and its descendants has been modernised by approaches that involve constraint solving, which proved to be more modular and extensible. In such systems, a term is translated to a logical constraint, whose solutions correspond to the types of the original term. A solver for such constraints may then be defined independently. To this end, we demonstrate such a constraint-based inference approach for FreezeML. We also discuss the effects of integrating the value restriction into FreezeML and provide detailed comparisons with other approaches towards first-class polymorphism in ML alongside a collection of examples found in the literature

    Set-theoretic Types for Erlang

    Full text link
    Erlang is a functional programming language with dynamic typing. The language offers great flexibility for destructing values through pattern matching and dynamic type tests. Erlang also comes with a type language supporting parametric polymorphism, equi-recursive types, as well as union and a limited form of intersection types. However, type signatures only serve as documentation, there is no check that a function body conforms to its signature. Set-theoretic types and semantic subtyping fit Erlang's feature set very well. They allow expressing nearly all constructs of its type language and provide means for statically checking type signatures. This article brings set-theoretic types to Erlang and demonstrates how existing Erlang code can be statically typechecked without or with only minor modifications to the code. Further, the article formalizes the main ingredients of the type system in a small core calculus, reports on an implementation of the system, and compares it with other static typecheckers for Erlang.Comment: 14 pages, 9 figures, IFL 2022; latexmk -pdf to buil

    Declarative Specification of Intraprocedural Control-flow and Dataflow Analysis

    Get PDF
    Static program analysis plays a crucial role in ensuring the quality and security of software applications by detecting and fixing bugs, and potential security vulnerabilities in the code. The use of declarative paradigms in dataflow analysis as part of static program analysis has become increasingly popular in recent years. This is due to its enhanced expressivity and modularity, allowing for a higher-level programming approach, resulting in easy and efficient development.The aim of this thesis is to explore the design and implementation of control-flow and dataflow analyses using the declarative Reference Attribute Grammars formalism. Specifically, we focus on the construction of analyses directly on the source code rather than on an intermediate representation.The main result of this thesis is our language-agnostic framework, called IntraCFG. IntraCFG enables efficient and effective dataflow analysis by allowing the construction of precise and source-level control-flow graphs. The framework superimposes control-flow graphs on top of the abstract syntax tree of the program. The effectiveness of IntraCFG is demonstrated through two case studies, IntraJ and IntraTeal. These case studies showcase the potential and flexibility of IntraCFG in diverse contexts, such as bug detection and education. IntraJ supports the Java programming language, while IntraTeal is a tool designed for teaching program analysis for an educational language, Teal.IntraJ has proven to be faster than and as precise as well-known industrial tools. The combination of precision, performance, and on-demand evaluation in IntraJ leads to low latency in querying the analysis results. This makes IntraJ a suitable tool for use in interactive tools. Preliminary experiments have also been conducted to demonstrate how IntraJ can be used to support interactive bug detection and fixing.Additionally, this thesis presents JFeature, a tool for automatically extracting and summarising the features of a Java corpus, including the use of different Java features (e.g., use of Lambda Expressions) across different Java versions. JFeature provides researchers and developers with a deeper understanding of the characteristics of corpora, enabling them to identify suitable benchmarks for the evaluation of their tools and methodologies

    Mining Butterflies in Streaming Graphs

    Get PDF
    This thesis introduces two main-memory systems sGrapp and sGradd for performing the fundamental analytic tasks of biclique counting and concept drift detection over a streaming graph. A data-driven heuristic is used to architect the systems. To this end, initially, the growth patterns of bipartite streaming graphs are mined and the emergence principles of streaming motifs are discovered. Next, the discovered principles are (a) explained by a graph generator called sGrow; and (b) utilized to establish the requirements for efficient, effective, explainable, and interpretable management and processing of streams. sGrow is used to benchmark stream analytics, particularly in the case of concept drift detection. sGrow displays robust realization of streaming growth patterns independent of initial conditions, scale and temporal characteristics, and model configurations. Extensive evaluations confirm the simultaneous effectiveness and efficiency of sGrapp and sGradd. sGrapp achieves mean absolute percentage error up to 0.05/0.14 for the cumulative butterfly count in streaming graphs with uniform/non-uniform temporal distribution and a processing throughput of 1.5 million data records per second. The throughput and estimation error of sGrapp are 160x higher and 0.02x lower than baselines. sGradd demonstrates an improving performance over time, achieves zero false detection rates when there is not any drift and when drift is already detected, and detects sequential drifts in zero to a few seconds after their occurrence regardless of drift intervals

    Smart object-oriented access control: Distributed access control for the Internet of Things

    Get PDF
    Ensuring that data and devices are secure is of critical importance to information technology. While access control has held a key role in traditional computer security, its role in the evolving Internet of Things is less clear. In particular, the access control literature has suggested that new challenges, such as multi-user controls, fine-grained controls, and dynamic controls, prompt a foundational re-thinking of access control. We analyse these challenges, finding instead that the main foundational challenge posed by the Internet of Things involves decentralization: accurately describing access control in Internet of Things environments (e.g., the Smart Home) requires a new model of multiple, independent access control systems. To address this challenge, we propose a meta-model (i.e., a model of models): Smart Object-Oriented Access Control (SOOAC). This model is an extension of the XACML framework, built from principles relating to modularity adapted from object-oriented programming and design. SOOAC draws attention to a new class of problem involving the resolution of policy conflicts that emerge from the interaction of smart devices in the home. Contrary to traditional (local) policy conflicts, these global policy conflicts emerge when contradictory policies exist across multiple access control systems. We give a running example of a global policy conflict involving transitive access. To automatically avoid global policy conflicts before they arise, we extend SOOAC with a recursive algorithm through which devices communicate access requests before allowing or denying access themselves. This algorithm ensures that both individual devices and the collective smart home are secure. We implement SOOAC within a prototype smart home and assess its validity in terms of effectiveness and efficiency. Our analysis shows that SOOAC is successful at avoiding policy conflicts before they emerge, in real time. Finally, we explore improvements that can be made to SOOAC and suggest directions for future work

    A Theistic Critique of Secular Moral Nonnaturalism

    Get PDF
    This dissertation is an exercise in Theistic moral apologetics. It will be developing both a critique of secular nonnaturalist moral theory (moral Platonism) at the level of metaethics, as well as a positive form of the moral argument for the existence of God that follows from this critique. The critique will focus on the work of five prominent metaethical theorists of secular moral non-naturalism: David Enoch, Eric Wielenberg, Russ Shafer-Landau, Michael Huemer, and Christopher Kulp. Each of these thinkers will be critically examined. Following this critique, the positive moral argument for the existence of God will be developed, combining a cumulative, abductive argument that follows from filling in the content of a succinct apagogic argument. The cumulative abductive argument and the apagogic argument together, with a transcendental and modal component, will be presented to make the case that Theism is the best explanation for the kind of moral, rational beings we are and the kind of universe in which we live, a rational intelligible universe

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well
    corecore