2,637 research outputs found

    Detecting Simultaneous Integer Relations for Several Real Vectors

    Full text link
    An algorithm which either finds an nonzero integer vector m{\mathbf m} for given tt real nn-dimensional vectors x1,...,xt{\mathbf x}_1,...,{\mathbf x}_t such that xiTm=0{\mathbf x}_i^T{\mathbf m}=0 or proves that no such integer vector with norm less than a given bound exists is presented in this paper. The cost of the algorithm is at most O(n4+n3log⁥λ(X)){\mathcal O}(n^4 + n^3 \log \lambda(X)) exact arithmetic operations in dimension nn and the least Euclidean norm λ(X)\lambda(X) of such integer vectors. It matches the best complexity upper bound known for this problem. Experimental data show that the algorithm is better than an already existing algorithm in the literature. In application, the algorithm is used to get a complete method for finding the minimal polynomial of an unknown complex algebraic number from its approximation, which runs even faster than the corresponding \emph{Maple} built-in function.Comment: 10 page

    Gradual sub-lattice reduction and a new complexity for factoring polynomials

    Get PDF
    We present a lattice algorithm specifically designed for some classical applications of lattice reduction. The applications are for lattice bases with a generalized knapsack-type structure, where the target vectors are boundably short. For such applications, the complexity of the algorithm improves traditional lattice reduction by replacing some dependence on the bit-length of the input vectors by some dependence on the bound for the output vectors. If the bit-length of the target vectors is unrelated to the bit-length of the input, then our algorithm is only linear in the bit-length of the input entries, which is an improvement over the quadratic complexity floating-point LLL algorithms. To illustrate the usefulness of this algorithm we show that a direct application to factoring univariate polynomials over the integers leads to the first complexity bound improvement since 1984. A second application is algebraic number reconstruction, where a new complexity bound is obtained as well

    Complete hierarchies of efficient approximations to problems in entanglement theory

    Full text link
    We investigate several problems in entanglement theory from the perspective of convex optimization. This list of problems comprises (A) the decision whether a state is multi-party entangled, (B) the minimization of expectation values of entanglement witnesses with respect to pure product states, (C) the closely related evaluation of the geometric measure of entanglement to quantify pure multi-party entanglement, (D) the test whether states are multi-party entangled on the basis of witnesses based on second moments and on the basis of linear entropic criteria, and (E) the evaluation of instances of maximal output purities of quantum channels. We show that these problems can be formulated as certain optimization problems: as polynomially constrained problems employing polynomials of degree three or less. We then apply very recently established known methods from the theory of semi-definite relaxations to the formulated optimization problems. By this construction we arrive at a hierarchy of efficiently solvable approximations to the solution, approximating the exact solution as closely as desired, in a way that is asymptotically complete. For example, this results in a hierarchy of novel, efficiently decidable sufficient criteria for multi-particle entanglement, such that every entangled state will necessarily be detected in some step of the hierarchy. Finally, we present numerical examples to demonstrate the practical accessibility of this approach.Comment: 14 pages, 3 figures, tiny modifications, version to be published in Physical Review

    Identifying parameter regions for multistationarity

    Get PDF
    Mathematical modelling has become an established tool for studying the dynamics of biological systems. Current applications range from building models that reproduce quantitative data to identifying systems with predefined qualitative features, such as switching behaviour, bistability or oscillations. Mathematically, the latter question amounts to identifying parameter values associated with a given qualitative feature. We introduce a procedure to partition the parameter space of a parameterized system of ordinary differential equations into regions for which the system has a unique or multiple equilibria. The procedure is based on the computation of the Brouwer degree, and it creates a multivariate polynomial with parameter depending coefficients. The signs of the coefficients determine parameter regions with and without multistationarity. A particular strength of the procedure is the avoidance of numerical analysis and parameter sampling. The procedure consists of a number of steps. Each of these steps might be addressed algorithmically using various computer programs and available software, or manually. We demonstrate our procedure on several models of gene transcription and cell signalling, and show that in many cases we obtain a complete partitioning of the parameter space with respect to multistationarity.Comment: In this version the paper has been substantially rewritten and reorganised. Theorem 1 has been reformulated and Corollary 1 adde

    A paradox in bosonic energy computations via semidefinite programming relaxations

    Full text link
    We show that the recent hierarchy of semidefinite programming relaxations based on non-commutative polynomial optimization and reduced density matrix variational methods exhibits an interesting paradox when applied to the bosonic case: even though it can be rigorously proven that the hierarchy collapses after the first step, numerical implementations of higher order steps generate a sequence of improving lower bounds that converges to the optimal solution. We analyze this effect and compare it with similar behavior observed in implementations of semidefinite programming relaxations for commutative polynomial minimization. We conclude that the method converges due to the rounding errors occurring during the execution of the numerical program, and show that convergence is lost as soon as computer precision is incremented. We support this conclusion by proving that for any element p of a Weyl algebra which is non-negative in the Schrodinger representation there exists another element p' arbitrarily close to p that admits a sum of squares decomposition.Comment: 22 pages, 4 figure

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Exponentially small asymptotic estimates for the splitting of separatrices to whiskered tort with quadratic and cubic frequencies

    Get PDF
    We study the splitting of invariant manifolds of whiskered tori with two or three frequencies in nearly-integrable Hamiltonian systems, such that the hyperbolic part is given by a pendulum. We consider a 2-dimensional torus with a frequency vector omega = (1, Omega), where Omega is a quadratic irrational number, or a 3-dimensional torus with a frequency vector w = (1, Omega, Omega(2)), where Omega is a cubic irrational number. Applying the Poincare-Melnikov method, we find exponentially small asymptotic estimates for the maximal splitting distance between the stable and unstable manifolds associated to the invariant torus, and we show that such estimates depend strongly on the arithmetic properties of the frequencies. In the quadratic case, we use the continued fractions theory to establish a certain arithmetic property, fulfilled in 24 cases, which allows us to provide asymptotic estimates in a simple way. In the cubic case, we focus our attention to the case in which Q is the so-called cubic golden number (the real root of x(3) x - 1= 0), obtaining also asymptotic estimates. We point out the similitudes and differences between the results obtained for both the quadratic and cubic cases.Postprint (published version
    • 

    corecore