3,784 research outputs found

    Detecting Semantic Parts on Partially Occluded Objects

    Get PDF
    In this paper, we address the task of detecting semantic parts on partially occluded objects. We consider a scenario where the model is trained using non-occluded images but tested on occluded images. The motivation is that there are infinite number of occlusion patterns in real world, which cannot be fully covered in the training data. So the models should be inherently robust and adaptive to occlusions instead of fitting / learning the occlusion patterns in the training data. Our approach detects semantic parts by accumulating the confidence of local visual cues. Specifically, the method uses a simple voting method, based on log-likelihood ratio tests and spatial constraints, to combine the evidence of local cues. These cues are called visual concepts, which are derived by clustering the internal states of deep networks. We evaluate our voting scheme on the VehicleSemanticPart dataset with dense part annotations. We randomly place two, three or four irrelevant objects onto the target object to generate testing images with various occlusions. Experiments show that our algorithm outperforms several competitors in semantic part detection when occlusions are present.Comment: Accepted to BMVC 2017 (13 pages, 3 figures

    DeepVoting: A Robust and Explainable Deep Network for Semantic Part Detection under Partial Occlusion

    Get PDF
    In this paper, we study the task of detecting semantic parts of an object, e.g., a wheel of a car, under partial occlusion. We propose that all models should be trained without seeing occlusions while being able to transfer the learned knowledge to deal with occlusions. This setting alleviates the difficulty in collecting an exponentially large dataset to cover occlusion patterns and is more essential. In this scenario, the proposal-based deep networks, like RCNN-series, often produce unsatisfactory results, because both the proposal extraction and classification stages may be confused by the irrelevant occluders. To address this, [25] proposed a voting mechanism that combines multiple local visual cues to detect semantic parts. The semantic parts can still be detected even though some visual cues are missing due to occlusions. However, this method is manually-designed, thus is hard to be optimized in an end-to-end manner. In this paper, we present DeepVoting, which incorporates the robustness shown by [25] into a deep network, so that the whole pipeline can be jointly optimized. Specifically, it adds two layers after the intermediate features of a deep network, e.g., the pool-4 layer of VGGNet. The first layer extracts the evidence of local visual cues, and the second layer performs a voting mechanism by utilizing the spatial relationship between visual cues and semantic parts. We also propose an improved version DeepVoting+ by learning visual cues from context outside objects. In experiments, DeepVoting achieves significantly better performance than several baseline methods, including Faster-RCNN, for semantic part detection under occlusion. In addition, DeepVoting enjoys explainability as the detection results can be diagnosed via looking up the voting cues

    Visual Concepts and Compositional Voting

    Get PDF
    It is very attractive to formulate vision in terms of pattern theory \cite{Mumford2010pattern}, where patterns are defined hierarchically by compositions of elementary building blocks. But applying pattern theory to real world images is currently less successful than discriminative methods such as deep networks. Deep networks, however, are black-boxes which are hard to interpret and can easily be fooled by adding occluding objects. It is natural to wonder whether by better understanding deep networks we can extract building blocks which can be used to develop pattern theoretic models. This motivates us to study the internal representations of a deep network using vehicle images from the PASCAL3D+ dataset. We use clustering algorithms to study the population activities of the features and extract a set of visual concepts which we show are visually tight and correspond to semantic parts of vehicles. To analyze this we annotate these vehicles by their semantic parts to create a new dataset, VehicleSemanticParts, and evaluate visual concepts as unsupervised part detectors. We show that visual concepts perform fairly well but are outperformed by supervised discriminative methods such as Support Vector Machines (SVM). We next give a more detailed analysis of visual concepts and how they relate to semantic parts. Following this, we use the visual concepts as building blocks for a simple pattern theoretical model, which we call compositional voting. In this model several visual concepts combine to detect semantic parts. We show that this approach is significantly better than discriminative methods like SVM and deep networks trained specifically for semantic part detection. Finally, we return to studying occlusion by creating an annotated dataset with occlusion, called VehicleOcclusion, and show that compositional voting outperforms even deep networks when the amount of occlusion becomes large.Comment: It is accepted by Annals of Mathematical Sciences and Application

    Grid Loss: Detecting Occluded Faces

    Full text link
    Detection of partially occluded objects is a challenging computer vision problem. Standard Convolutional Neural Network (CNN) detectors fail if parts of the detection window are occluded, since not every sub-part of the window is discriminative on its own. To address this issue, we propose a novel loss layer for CNNs, named grid loss, which minimizes the error rate on sub-blocks of a convolution layer independently rather than over the whole feature map. This results in parts being more discriminative on their own, enabling the detector to recover if the detection window is partially occluded. By mapping our loss layer back to a regular fully connected layer, no additional computational cost is incurred at runtime compared to standard CNNs. We demonstrate our method for face detection on several public face detection benchmarks and show that our method outperforms regular CNNs, is suitable for realtime applications and achieves state-of-the-art performance.Comment: accepted to ECCV 201

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio
    corecore