37 research outputs found

    Location Prediction: Communities Speak Louder than Friends

    Get PDF
    Humans are social animals, they interact with different communities of friends to conduct different activities. The literature shows that human mobility is constrained by their social relations. In this paper, we investigate the social impact of a person's communities on his mobility, instead of all friends from his online social networks. This study can be particularly useful, as certain social behaviors are influenced by specific communities but not all friends. To achieve our goal, we first develop a measure to characterize a person's social diversity, which we term `community entropy'. Through analysis of two real-life datasets, we demonstrate that a person's mobility is influenced only by a small fraction of his communities and the influence depends on the social contexts of the communities. We then exploit machine learning techniques to predict users' future movement based on their communities' information. Extensive experiments demonstrate the prediction's effectiveness.Comment: ACM Conference on Online Social Networks 2015, COSN 201

    DP-LTOD: Differential Privacy Latent Trajectory Community Discovering Services over Location-Based Social Networks

    Full text link
    IEEE Community detection for Location-based Social Networks (LBSNs) has been received great attention mainly in the field of large-scale Wireless Communication Networks. In this paper, we present a Differential Privacy Latent Trajectory cOmmunity Discovering (DP-LTOD) scheme, which obfuscates original trajectory sequences into differential privacy-guaranteed trajectory sequences for trajectory privacy-preserving, and discovers latent trajectory communities through clustering the uploaded trajectory sequences. Different with traditional trajectory privacy-preserving methods, we first partition original trajectory sequence into different segments. Then, the suitable locations and segments are selected to constitute obfuscated trajectory sequence. Specifically, we formulate the trajectory obfuscation problem to select an optimal trajectory sequence which has the smallest difference with original trajectory sequence. In order to prevent privacy leakage, we add Laplace noise and exponential noise to the outputs during the stages of location obfuscation matrix generation and trajectory sequence function generation, respectively. Through formal privacy analysis,we prove that DP-LTOD scheme can guarantee \epsilon-differential private. Moreover, we develop a trajectory clustering algorithm to classify the trajectories into different kinds of clusters according to semantic distance and geographical distance. Extensive experiments on two real-world datasets illustrate that our DP-LTOD scheme can not only discover latent trajectory communities, but also protect user privacy from leaking

    Exploration de la dynamique humaine basée sur des données massives de réseaux sociaux de géolocalisation : analyse et applications

    Get PDF
    Human dynamics is an essential aspect of human centric computing. As a transdisciplinary research field, it focuses on understanding the underlying patterns, relationships, and changes of human behavior. By exploring human dynamics, we can understand not only individual’s behavior, such as a presence at a specific place, but also collective behaviors, such as social movement. Understanding human dynamics can thus enable various applications, such as personalized location based services. However, before the availability of ubiquitous smart devices (e.g., smartphones), it is practically hard to collect large-scale human behavior data. With the ubiquity of GPS-equipped smart phones, location based social media has gained increasing popularity in recent years, making large-scale user activity data become attainable. Via location based social media, users can share their activities as real-time presences at Points of Interests (POIs), such as a restaurant or a bar, within their social circles. Such data brings an unprecedented opportunity to study human dynamics. In this dissertation, based on large-scale location centric social media data, we study human dynamics from both individual and collective perspectives. From individual perspective, we study user preference on POIs with different granularities and its applications in personalized location based services, as well as the spatial-temporal regularity of user activities. From collective perspective, we explore the global scale collective activity patterns with both country and city granularities, and also identify their correlations with diverse human culturesLa dynamique humaine est un sujet essentiel de l'informatique centrée sur l’homme. Elle se concentre sur la compréhension des régularités sous-jacentes, des relations, et des changements dans les comportements humains. En analysant la dynamique humaine, nous pouvons comprendre non seulement des comportements individuels, tels que la présence d’une personne à un endroit précis, mais aussi des comportements collectifs, comme les mouvements sociaux. L’exploration de la dynamique humaine permet ainsi diverses applications, entre autres celles des services géo-dépendants personnalisés dans des scénarios de ville intelligente. Avec l'omniprésence des smartphones équipés de GPS, les réseaux sociaux de géolocalisation ont acquis une popularité croissante au cours des dernières années, ce qui rend les données de comportements des utilisateurs disponibles à grande échelle. Sur les dits réseaux sociaux de géolocalisation, les utilisateurs peuvent partager leurs activités en temps réel avec par l'enregistrement de leur présence à des points d'intérêt (POIs), tels qu’un restaurant. Ces données d'activité contiennent des informations massives sur la dynamique humaine. Dans cette thèse, nous explorons la dynamique humaine basée sur les données massives des réseaux sociaux de géolocalisation. Concrètement, du point de vue individuel, nous étudions la préférence de l'utilisateur quant aux POIs avec des granularités différentes et ses applications, ainsi que la régularité spatio-temporelle des activités des utilisateurs. Du point de vue collectif, nous explorons la forme d'activité collective avec les granularités de pays et ville, ainsi qu’en corrélation avec les cultures globale

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change

    Advanced Location-Based Technologies and Services

    Get PDF
    Since the publication of the first edition in 2004, advances in mobile devices, positioning sensors, WiFi fingerprinting, and wireless communications, among others, have paved the way for developing new and advanced location-based services (LBSs). This second edition provides up-to-date information on LBSs, including WiFi fingerprinting, mobile computing, geospatial clouds, geospatial data mining, location privacy, and location-based social networking. It also includes new chapters on application areas such as LBSs for public health, indoor navigation, and advertising. In addition, the chapter on remote sensing has been revised to address advancements

    LOCATION-BASED MARKETING: CONCEPTS, TECHNOLOGIES AND SERVICES

    Get PDF
    siirretty Doriast

    Revisiting Urban Dynamics through Social Urban Data:

    Get PDF
    The study of dynamic spatial and social phenomena in cities has evolved rapidly in the recent years, yielding new insights into urban dynamics. This evolution is strongly related to the emergence of new sources of data for cities (e.g. sensors, mobile phones, online social media etc.), which have potential to capture dimensions of social and geographic systems that are difficult to detect in traditional urban data (e.g. census data). However, as the available sources increase in number, the produced datasets increase in diversity. Besides heterogeneity, emerging social urban data are also characterized by multidimensionality. The latter means that the information they contain may simultaneously address spatial, social, temporal, and topical attributes of people and places. Therefore, integration and geospatial (statistical) analysis of multidimensional data remain a challenge. The question which, then, arises is how to integrate heterogeneous and multidimensional social urban data into the analysis of human activity dynamics in cities? To address the above challenge, this thesis proposes the design of a framework of novel methods and tools for the integration, visualization, and exploratory analysis of large-scale and heterogeneous social urban data to facilitate the understanding of urban dynamics. The research focuses particularly on the spatiotemporal dynamics of human activity in cities, as inferred from different sources of social urban data. The main objective is to provide new means to enable the incorporation of heterogeneous social urban data into city analytics, and to explore the influence of emerging data sources on the understanding of cities and their dynamics.  In mitigating the various heterogeneities, a methodology for the transformation of heterogeneous data for cities into multidimensional linked urban data is, therefore, designed. The methodology follows an ontology-based data integration approach and accommodates a variety of semantic (web) and linked data technologies. A use case of data interlinkage is used as a demonstrator of the proposed methodology. The use case employs nine real-world large-scale spatiotemporal data sets from three public transportation organizations, covering the entire public transport network of the city of Athens, Greece.  To further encourage the consumption of linked urban data by planners and policy-makers, a set of webbased tools for the visual representation of ontologies and linked data is designed and developed. The tools – comprising the OSMoSys framework – provide graphical user interfaces for the visual representation, browsing, and interactive exploration of both ontologies and linked urban data.   After introducing methods and tools for data integration, visual exploration of linked urban data, and derivation of various attributes of people and places from different social urban data, it is examined how they can all be combined into a single platform. To achieve this, a novel web-based system (coined SocialGlass) for the visualization and exploratory analysis of human activity dynamics is designed. The system combines data from various geo-enabled social media (i.e. Twitter, Instagram, Sina Weibo) and LBSNs (i.e. Foursquare), sensor networks (i.e. GPS trackers, Wi-Fi cameras), and conventional socioeconomic urban records, but also has the potential to employ custom datasets from other sources. A real-world case study is used as a demonstrator of the capacities of the proposed web-based system in the study of urban dynamics. The case study explores the potential impact of a city-scale event (i.e. the Amsterdam Light festival 2015) on the activity and movement patterns of different social categories (i.e. residents, non-residents, foreign tourists), as compared to their daily and hourly routines in the periods  before and after the event. The aim of the case study is twofold. First, to assess the potential and limitations of the proposed system and, second, to investigate how different sources of social urban data could influence the understanding of urban dynamics. The contribution of this doctoral thesis is the design and development of a framework of novel methods and tools that enables the fusion of heterogeneous multidimensional data for cities. The framework could foster planners, researchers, and policy makers to capitalize on the new possibilities given by emerging social urban data. Having a deep understanding of the spatiotemporal dynamics of cities and, especially of the activity and movement behavior of people, is expected to play a crucial role in addressing the challenges of rapid urbanization. Overall, the framework proposed by this research has potential to open avenues of quantitative explorations of urban dynamics, contributing to the development of a new science of cities

    Revisiting Urban Dynamics through Social Urban Data

    Get PDF
    The study of dynamic spatial and social phenomena in cities has evolved rapidly in the recent years, yielding new insights into urban dynamics. This evolution is strongly related to the emergence of new sources of data for cities (e.g. sensors, mobile phones, online social media etc.), which have potential to capture dimensions of social and geographic systems that are difficult to detect in traditional urban data (e.g. census data). However, as the available sources increase in number, the produced datasets increase in diversity. Besides heterogeneity, emerging social urban data are also characterized by multidimensionality. The latter means that the information they contain may simultaneously address spatial, social, temporal, and topical attributes of people and places. Therefore, integration and geospatial (statistical) analysis of multidimensional data remain a challenge. The question which, then, arises is how to integrate heterogeneous and multidimensional social urban data into the analysis of human activity dynamics in cities?  To address the above challenge, this thesis proposes the design of a framework of novel methods and tools for the integration, visualization, and exploratory analysis of large-scale and heterogeneous social urban data to facilitate the understanding of urban dynamics. The research focuses particularly on the spatiotemporal dynamics of human activity in cities, as inferred from different sources of social urban data. The main objective is to provide new means to enable the incorporation of heterogeneous social urban data into city analytics, and to explore the influence of emerging data sources on the understanding of cities and their dynamics.  In mitigating the various heterogeneities, a methodology for the transformation of heterogeneous data for cities into multidimensional linked urban data is, therefore, designed. The methodology follows an ontology-based data integration approach and accommodates a variety of semantic (web) and linked data technologies. A use case of data interlinkage is used as a demonstrator of the proposed methodology. The use case employs nine real-world large-scale spatiotemporal data sets from three public transportation organizations, covering the entire public transport network of the city of Athens, Greece.  To further encourage the consumption of linked urban data by planners and policy-makers, a set of webbased tools for the visual representation of ontologies and linked data is designed and developed. The tools – comprising the OSMoSys framework – provide graphical user interfaces for the visual representation, browsing, and interactive exploration of both ontologies and linked urban data.  After introducing methods and tools for data integration, visual exploration of linked urban data, and derivation of various attributes of people and places from different social urban data, it is examined how they can all be combined into a single platform. To achieve this, a novel web-based system (coined SocialGlass) for the visualization and exploratory analysis of human activity dynamics is designed. The system combines data from various geo-enabled social media (i.e. Twitter, Instagram, Sina Weibo) and LBSNs (i.e. Foursquare), sensor networks (i.e. GPS trackers, Wi-Fi cameras), and conventional socioeconomic urban records, but also has the potential to employ custom datasets from other sources.  A real-world case study is used as a demonstrator of the capacities of the proposed web-based system in the study of urban dynamics. The case study explores the potential impact of a city-scale event (i.e. the Amsterdam Light festival 2015) on the activity and movement patterns of different social categories (i.e. residents, non-residents, foreign tourists), as compared to their daily and hourly routines in the periods  before and after the event. The aim of the case study is twofold. First, to assess the potential and limitations of the proposed system and, second, to investigate how different sources of social urban data could influence the understanding of urban dynamics.  The contribution of this doctoral thesis is the design and development of a framework of novel methods and tools that enables the fusion of heterogeneous multidimensional data for cities. The framework could foster planners, researchers, and policy makers to capitalize on the new possibilities given by emerging social urban data. Having a deep understanding of the spatiotemporal dynamics of cities and, especially of the activity and movement behavior of people, is expected to play a crucial role in addressing the challenges of rapid urbanization. Overall, the framework proposed by this research has potential to open avenues of quantitative explorations of urban dynamics, contributing to the development of a new science of cities
    corecore