8 research outputs found

    Detecting Mechanical Alternans Utilizing Photoplethysmography

    Get PDF
    Mechanical alternans (MA) is a biomarker associated with mortality in heart failure patients. Its detection through continuous blood pressure (BP) monitoring is costly and impractical. In this work, we propose the use of photoplethysmography (PPG) as a non-invasive solution for MA detection. Continuous invasive BP and PPG were recorded and analyzed during ventricular pacing in 10 patients. The presence of MA was evaluated in BP and in features characterizing the PPG pulse morphology. Mechanical alternans was defined as an alternation in maximum dP/dt for a duration of 20 consecutive heart beats or more. Mechanical alternans was observed in BP in 5 patients (50%). The PPG-based MA surrogates showing the highest detection accuracy, were the maximum of the first derivative of the PPG pulse (V'M), and the pulse amplitude (A). Both features allow detection of MA positive patients with 100% sensitivity and 100% specificity. The magnitude of MA was correlated between BP and V'M PPG (R=0.92, p<0.001) and between BP and A PPG (R=0.89, p<0.001). In conclusion, MA can be accurately detected noninvasively through the PPG

    European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population.

    Get PDF
    In clinical practice and for scientific purposes, cardiologists and primary care physicians perform risk assessment in patients with cardiac diseases or conditions with high risk of developing such. The European Heart Rhythm Association (EHRA), Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS) set down this expert consensus statement task force to summarize the consensus regarding risk assessment in cardiac arrhythmias. Objectives were to raise awareness of using the right risk assessment tool for a given outcome in a given population, and to provide physicians with practical proposals that may lead to rational and evidence-based risk assessment and improvement of patient care in this regard. A large variety of methods are used for risk assessment and choosing the best methods and tools hereof in a given situation is not simple. Even though parameters and test results found associated with increased risk of one outcome (e.g. death) may also be associated with higher risk of other adverse outcomes, specific risk assessment strategies should be used only for the purposes for which they are validated. The work of this task force is summarized in a row of consensus statement tables

    Combining Synthesis of Cardiorespiratory Signals and Artifacts with Deep Learning for Robust Vital Sign Estimation

    Get PDF
    Healthcare has been remarkably morphing on the account of Big Data. As Machine Learning (ML) consolidates its place in simpler clinical chores, more complex Deep Learning (DL) algorithms have struggled to keep up, despite their superior capabilities. This is mainly attributed to the need for large amounts of data for training, which the scientific community is unable to satisfy. The number of promising DL algorithms is considerable, although solutions directly targeting the shortage of data lack. Currently, dynamical generative models are the best bet, but focus on single, classical modalities and tend to complicate significantly with the amount of physiological effects they can simulate. This thesis aims at providing and validating a framework, specifically addressing the data deficit in the scope of cardiorespiratory signals. Firstly, a multimodal statistical synthesizer was designed to generate large, annotated artificial signals. By expressing data through coefficients of pre-defined, fitted functions and describing their dependence with Gaussian copulas, inter- and intra-modality associations were learned. Thereafter, new coefficients are sampled to generate artificial, multimodal signals with the original physiological dynamics. Moreover, normal and pathological beats along with artifacts were included by employing Markov models. Secondly, a convolutional neural network (CNN) was conceived with a novel sensor-fusion architecture and trained with synthesized data under real-world experimental conditions to evaluate how its performance is affected. Both the synthesizer and the CNN not only performed at state of the art level but also innovated with multiple types of generated data and detection error improvements, respectively. Cardiorespiratory data augmentation corrected performance drops when not enough data is available, enhanced the CNN’s ability to perform on noisy signals and to carry out new tasks when introduced to, otherwise unavailable, types of data. Ultimately, the framework was successfully validated showing potential to leverage future DL research on Cardiology into clinical standards
    corecore