242 research outputs found

    A Bayesian approach to discrete object detection in astronomical datasets

    Full text link
    A Bayesian approach is presented for detecting and characterising the signal from discrete objects embedded in a diffuse background. The approach centres around the evaluation of the posterior distribution for the parameters of the discrete objects, given the observed data, and defines the theoretically-optimal procedure for parametrised object detection. Two alternative strategies are investigated: the simultaneous detection of all the discrete objects in the dataset, and the iterative detection of objects. In both cases, the parameter space characterising the object(s) is explored using Markov-Chain Monte-Carlo sampling. For the iterative detection of objects, another approach is to locate the global maximum of the posterior at each iteration using a simulated annealing downhill simplex algorithm. The techniques are applied to a two-dimensional toy problem consisting of Gaussian objects embedded in uncorrelated pixel noise. A cosmological illustration of the iterative approach is also presented, in which the thermal and kinetic Sunyaev-Zel'dovich effects from clusters of galaxies are detected in microwave maps dominated by emission from primordial cosmic microwave background anisotropies.Comment: 20 pages, 12 figures, accepted by MNRAS; contains some additional material in response to referee's comment

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure

    Critical phenomena in complex networks

    Full text link
    The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researchers have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of these critical phenomena, namely structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. We also discuss systems where a network and interacting agents on it influence each other. We overview a wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, k-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks. We also discuss strong finite size effects in these systems and highlight open problems and perspectives.Comment: Review article, 79 pages, 43 figures, 1 table, 508 references, extende

    Characterization of complex networks: A survey of measurements

    Full text link
    Each complex network (or class of networks) presents specific topological features which characterize its connectivity and highly influence the dynamics of processes executed on the network. The analysis, discrimination, and synthesis of complex networks therefore rely on the use of measurements capable of expressing the most relevant topological features. This article presents a survey of such measurements. It includes general considerations about complex network characterization, a brief review of the principal models, and the presentation of the main existing measurements. Important related issues covered in this work comprise the representation of the evolution of complex networks in terms of trajectories in several measurement spaces, the analysis of the correlations between some of the most traditional measurements, perturbation analysis, as well as the use of multivariate statistics for feature selection and network classification. Depending on the network and the analysis task one has in mind, a specific set of features may be chosen. It is hoped that the present survey will help the proper application and interpretation of measurements.Comment: A working manuscript with 78 pages, 32 figures. Suggestions of measurements for inclusion are welcomed by the author

    KIC 3858884: a hybrid {\delta} Sct pulsator in a highly eccentric eclipsing binary

    Full text link
    The analysis of eclipsing binaries containing non-radial pulsators allows: i) to combine two different and independent sources of information on the internal structure and evolutionary status of the components, and ii) to study the effects of tidal forces on pulsations. KIC 3858884 is a bright Kepler target whose light curve shows deep eclipses, complex pulsation patterns with pulsation frequencies typical of {\delta} Sct, and a highly eccentric orbit. We present the result of the analysis of Kepler photometry and of high resolution phaseresolved spectroscopy. Spectroscopy yielded both the radial velocity curves and, after spectral disentangling, the primary component effective temperature and metallicity, and line-of-sight projected rotational velocities. The Kepler light curve was analyzed with an iterative procedure devised to disentangle eclipses from pulsations which takes into account the visibility of the pulsating star during eclipses. The search for the best set of binary parameters was performed combining the synthetic light curve models with a genetic minimization algorithm, which yielded a robust and accurate determination of the system parameters. The binary components have very similar masses (1.88 and 1.86 Msun) and effective temperatures (6800 and 6600 K), but different radii (3.45 and 3.05 Rsun). The comparison with the theoretical models evidenced a somewhat different evolutionary status of the components and the need of introducing overshooting in the models. The pulsation analysis indicates a hybrid nature of the pulsating (secondary) component, the corresponding high order g-modes might be excited by an intrinsic mechanism or by tidal forces.Comment: 18 pages, 14 figures, accepted for publication on Astronomy & Astrophysic

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Quantum-Inspired Machine Learning: a Survey

    Full text link
    Quantum-inspired Machine Learning (QiML) is a burgeoning field, receiving global attention from researchers for its potential to leverage principles of quantum mechanics within classical computational frameworks. However, current review literature often presents a superficial exploration of QiML, focusing instead on the broader Quantum Machine Learning (QML) field. In response to this gap, this survey provides an integrated and comprehensive examination of QiML, exploring QiML's diverse research domains including tensor network simulations, dequantized algorithms, and others, showcasing recent advancements, practical applications, and illuminating potential future research avenues. Further, a concrete definition of QiML is established by analyzing various prior interpretations of the term and their inherent ambiguities. As QiML continues to evolve, we anticipate a wealth of future developments drawing from quantum mechanics, quantum computing, and classical machine learning, enriching the field further. This survey serves as a guide for researchers and practitioners alike, providing a holistic understanding of QiML's current landscape and future directions.Comment: 56 pages, 13 figures, 8 table
    • …
    corecore