6 research outputs found

    Improved steganalysis technique based on least significant bit using artificial neural network for MP3 files

    Get PDF
    MP3 files are one of the most widely used digital audio formats that provide a high compression ratio with reliable quality. Their widespread use has resulted in MP3 audio files becoming excellent covers to carry hidden information in audio steganography on the Internet. Emerging interest in uncovering such hidden information has opened up a field of research called steganalysis that looked at the detection of hidden messages in a specific media. Unfortunately, the detection accuracy in steganalysis is affected by bit rates, sampling rate of the data type, compression rates, file track size and standard, as well as benchmark dataset of the MP3 files. This thesis thus proposed an effective technique to steganalysis of MP3 audio files by deriving a combination of features from MP3 file properties. Several trials were run in selecting relevant features of MP3 files like the total harmony distortion, power spectrum density, and peak signal-to-noise ratio (PSNR) for investigating the correlation between different channels of MP3 signals. The least significant bit (LSB) technique was used in the detection of embedded secret files in stego-objects. This involved reading the stego-objects for statistical evaluation for possible points of secret messages and classifying these points into either high or low tendencies for containing secret messages. Feed Forward Neural Network with 3 layers and traingdx function with an activation function for each layer were also used. The network vector contains information about all features, and is used to create a network for the given learning process. Finally, an evaluation process involving the ANN test that compared the results with previous techniques, was performed. A 97.92% accuracy rate was recorded when detecting MP3 files under 96 kbps compression. These experimental results showed that the proposed approach was effective in detecting embedded information in MP3 files. It demonstrated significant improvement in detection accuracy at low embedding rates compared with previous work

    Speech steganalysis based on the delay vector variance method

    Get PDF
    This study investigates the use of delay vector variance-based features for steganalysis of recorded speech. Because data hidden within a speech signal distort the properties of the original speech signal, we designed a new audio steganalyzer that utilizes delay vector variance (DVV) features based on surrogate data in order to detect the existence of hidden data. The proposed DVV features are evaluated individually and together with other chaotic-type features. The performance of the proposed steganalyzer method is also discussed with a focus on the effect of different hiding capacities. The results of the study show that using the proposed DVV features alone or in cooperation with other features helps in designing a distinctive audio steganalyzer, as cooperation with other chaotic-type features provides higher performances for stego and cover objects

    Pokročilé metody detekce steganografického obsahu

    Get PDF
    Steganography can be used for illegal activities. It is essential to be prepared. To detect steganography images, we have a counter-technique known as steganalysis. There are different steganalysis types, depending on if the original artifact (cover work) is known or not, or we know which algorithm was used for embedding. In terms of practical use, the most important are “blind steganalysis” methods that can be applied to image files because we do not have the original cover work for comparison. This philosophiæ doctor thesis describes the methodology to the issues of image steganalysis.In this work, it is crucial to understand the behavior of the targeted steganography algorithm. Then we can use it is weaknesses to increase the detection capability and success of categorization. We are primarily focusing on breaking the steganography algorithm OutGuess2.0. and secondary on breaking the F5 algorithm. We are analyzing the detector's ability, which utilizes a calibration process, blockiness calculation, and shallow neural network, to detect the presence of steganography message in the suspected image. The new approach and results are discussed in this Ph.D. thesis.Steganografie může být využita k nelegálním aktivitám. Proto je velmi důležité být připraven. K detekci steganografického obrázku máme k dispozici techniku známou jako stegoanalýza. Existují různé typy stegoanalýzy v závislosti na tom, zda je znám originální nosič nebo zdali víme, jaký byl použit algoritmus pro vložení tajné zprávy. Z hlediska praktického použití jsou nejdůležitější metody "slepé stagoanalýzy", které zle aplikovat na obrazové soubory a jelikož nemáme originální nosič pro srovnání. Tato doktorská práce popisuje metodologii obrazové stegoanalýzy. V této práci je důležité porozumět chování cíleného steganografického algoritmu. Pak můžeme využít jeho slabiny ke zvýšení detekční schopnosti a úspěšnosti kategorizace. Primárně se zaměřujeme na prolomení steganografického algoritmu OutGuess2.0 a sekundárně na algoritmus F5. Analyzujeme schopnost detektoru, který využívá proces kalibrace, výpočtu shlukování a mělkou neuronovou síť k detekci přítomnosti steganografické zprávy na podezřelém snímku. Nový přístup a výsledky jsou sepsány v této doktorské práci.460 - Katedra informatikyvyhově

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced
    corecore