1,046 research outputs found

    The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population.

    Get PDF
    Hundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection. Utilizing this approach, we reassembled published D. melanogaster population genomic data sets and added unpublished genomes from several sub-Saharan populations. Most notably, we present aligned data from phase 3 of the Drosophila Population Genomics Project (DPGP3), which provides 197 genomes from a single ancestral range population of D. melanogaster (from Zambia). The large sample size, high genetic diversity, and potentially simpler demographic history of the DPGP3 sample will make this a highly valuable resource for fundamental population genetic research. The complete set of assemblies described here, termed the Drosophila Genome Nexus, presently comprises 623 consistently aligned genomes and is publicly available in multiple formats with supporting documentation and bioinformatic tools. This resource will greatly facilitate population genomic analysis in this model species by reducing the methodological differences between data sets

    Multi-platform​ ​ discovery​ ​ of​ ​ haplotype-resolved structural​ ​ variation​ ​ in​ ​ human​ ​ genomes

    Get PDF
    The incomplete identification of structural variants from whole-genome sequencing data limits studies of human genetic diversity and disease association. Here, we apply a suite of long- and short-read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms to comprehensively analyze three human parent-child trios to define the full spectrum of human genetic variation in a haplotype-resolved manner. We identify 818,181 indel variants (<50 bp) and 31,599 structural variants (≥50 bp) per human genome, a seven fold increase in structural variation compared to previous reports, including from the 1000 Genomes Project. We also discovered 156 inversions per genome, most of which previously escaped detection, as well as large unbalanced chromosomal rearrangements. We provide near-complete, haplotype-resolved structural variation for three genomes that can now be used as a gold standard for the scientific community and we make specific recommendations for maximizing structural variation sensitivity for future large-scale genome sequencing studies
    corecore