8,021 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 184

    Get PDF
    This bibliography lists 139 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1978

    Evaluation of behavior in transgenic mouse models to understand human congenital pain conditions

    Full text link
    BACKGROUND: Containing a brain for signal processing and decision making, and a peripheral component for sensation and response, the nervous system provides higher organisms a powerful method of interacting with their environment. The specific neurons involved in pain sensation are known as nociceptors and are the source of normal nociceptive pain signaling to prompt appropriate responses. Though acute hypersensitization can be advantageous by encouraging an organism to allow an injured area to heal, chronic pain conditions can be pathological and can markedly reduce quality of life. While a variety of genes have been associated with congenital pain conditions, two rare cases examined in this study have not had their mutated genes identified. Potassium voltage-gated channel subfamily H member 8, or KCNH8, is involved in regulating action potential production and propagation, and has not been linked with pain processing of any kind to date. Here, a male patient evaluated at Boston Children’s Hospital contains a novel single-base KCNH8 mutation and possesses an extremely low sensitivity to cold temperatures and mechanical pain, but a higher sensitivity to warmer temperatures. A separate protein, intersectin-2, or ITSN2, normally functions in clathrin-mediated endocytosis and exocytosis. A second patient at Boston Children’s Hospital expresses a previously-unseen point mutation in ITSN2 and experiences erythromelalgia, characterized by episodes of intense pain and red, swollen limbs during ambient warm temperatures. Through the use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome editing, this study will produce these specific genetic mutations in mouse lines to explore their effects on mammalian behavior. OBJECTIVES: This project employs two transgenic mouse models to study the behavioral phenotypes associated with rare potentially damaging mutations in KCNH8 and ITSN2 exhibited in the human patients. Through these experiments, a greater understanding of neural pain signaling and sensitivity changes can occur. METHODS: The differences in temperature preference of KCNH8 and ITSN2 mutant mice compared to wild type mice lacking these mutations was studied using thermal plates under cold and warm conditions. Direct application of acetone and von Frey filaments to mouse paws was used to study cold and mechanical sensitivity. Further testing of stamina, anxiety, coordination, and strength were also evaluated. RESULTS: A marked decrease in sensitivity to von Frey stimulation (p<0.01) and acetone administration (p<0.05) was observed in KCNH8 mutant mice. Thermal preference testing demonstrated a decreased preference for warmer temperatures as compared to wild type mice. In addition, anxiety levels were also observed to be slightly higher in these mutant KCNH8 mice (p<0.05). The mutant ITSN2 mice spent less time at cooler temperatures, though surprisingly they significantly preferred warmer conditions as compared to their wild type littermates. A full and partial reversal of these temperature preferences was demonstrated in cold and heat thermal conditions respectively after intraperitoneal gabapentin injection, which normalized the mice toward wild type behavior. CONCLUSIONS: Data from the KCNH8 mutant mouse model indicates an aversion to warmer temperatures and a decreased ability to detect cold or mechanical pressure, much like the human patient. The mutant ITSN2 mice were less likely to spend time at cooler temperatures, indicating heightened sensory sensitivity, but their preference for warmer temperatures suggests a possible desensitization of the affected nociceptors. These results often mirror the patient’s phenotype, but the preference for ambient warmer environments appears opposite to the patient. As the ITSN2 mice feel discomfort at cooler temperatures, a proposed desensitization at warmer temperatures would result in a more comfortable environment and could explain the observed preference. The trends toward normal neural firing rates achieved through gabapentin injection suggest that the aberrant responses in mutant ITSN2 mice is due to altered sensitization, but additional examination under these conditions with a larger group of mice is necessary to further unravel these signaling pathways. However, these extremely encouraging data introduce two new molecular targets for acute pain control

    The role of the skin in interoception : a neglected organ?

    Get PDF
    In the past two decades, interoception has received increasing attention in the fields of psychology and cognitive science, as well as neuroscience and physiology. A plethora of studies adopted the perception of cardiac signals as a proxy for interoception. However, recent findings have cast doubt to the methodological and intrinsic validity of the tasks used thus far. Therefore, there is an ongoing effort to improve the existing cardiac interoceptive tasks and to identify novel channels to target the perception of the physiological state of the body. Amid such scientific abundancy, one could question whether the field has been partially neglecting one of our widest organs in terms of dimensions and functions, the skin. According to some views grounded on anatomical and physiological evidence, skin-mediated signals such as affective touch, pain, and temperature have been re-defined as interoceptive. Nevertheless, there is no agreement at this regard. Here, we discuss some of the anatomical, physiological, and experimental arguments supporting the scientific study of interoception by means of skin-mediated signals. We argue that more attention should be paid to the skin as a sensory organ that monitors the bodily physiological state, and further propose thermosensation as a particularly attractive model of skin-mediated interoception.European Research Council under the European Union’s horizon 2020 research and innovation programme (SELF-UNITY)Marie Skłodowska-Curie Intra-European Individual Fellowship (HOMEOTHERMIC SELF)Accepte

    Continuous sensing and quantification of body motion in infants:A systematic review

    Get PDF
    Abnormal body motion in infants may be associated with neurodevelopmental delay or critical illness. In contrast to continuous patient monitoring of the basic vitals, the body motion of infants is only determined by discrete periodic clinical observations of caregivers, leaving the infants unattended for observation for a longer time. One step to fill this gap is to introduce and compare different sensing technologies that are suitable for continuous infant body motion quantification. Therefore, we conducted this systematic review for infant body motion quantification based on the PRISMA method (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). In this systematic review, we introduce and compare several sensing technologies with motion quantification in different clinical applications. We discuss the pros and cons of each sensing technology for motion quantification. Additionally, we highlight the clinical value and prospects of infant motion monitoring. Finally, we provide suggestions with specific needs in clinical practice, which can be referred by clinical users for their implementation. Our findings suggest that motion quantification can improve the performance of vital sign monitoring, and can provide clinical value to the diagnosis of complications in infants.</p

    Investigating the relationship between interoceptive accuracy, interoceptive awareness, and emotional susceptibility

    Get PDF
    Interoception, the sense of the physiological condition of the body, provides a basis for subjective feelings and emotions. Anterior insular cortex activity represents the state of the body and varies according to personality traits, such as emotional susceptibility (ES)-the tendency to experience feelings of discomfort and vulnerability when facing emotionally-laden stimuli. The accuracy of perceiving one's own bodily signals, or interoceptive accuracy (IAc), can be assessed with the heartbeat perception task (HPT), which is the experimental measure used by most of the existing research on interoception. However, IAc is only one facet of interoception. Interoceptive awareness (IAw) is the conscious perception of sensations from inside the body, such as heart beat, respiration, satiety, and the autonomic nervous system sensations related to emotions, which create the sense of the physiological condition of the body. We developed an Italian version of the recent self-report Multidimensional Assessment of Interoceptive Awareness (MAIA), tested its psychometric properties (reliability, dimensionality, and construct validity), and examined its relationship to ES, as assessed using the Emotional Susceptibility Scale, in a sample (n = 321) of healthy Italian psychology students (293 females, mean age: 20.5 years). In a subgroup of females (n = 135), we measured IAc with the HPT. We used a series of correlation/regression analyses to examine the complex interplay between the three constructs. We provide further evidence for a substantial independence of the IAc and IAw measures, confirming previous reports and current theoretical models that differentiate between IAc and IAw. Our analyses elucidate the complex relationship between distinct dimensions of IAw and ES, highlighting the need for continued efforts to shed more light on this topic

    A heuristic mathematical model for the dynamics of sensory conflict and motion sickness

    Get PDF
    By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstance, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviours. The model admits several possibilities for adaptive mechanisms which do not involve internal model updating. Further systematic efforts to experimentally refine and validate the model are indicated

    A heuristic mathematical model for the dynamics of sensory conflict and motion sickness

    Get PDF
    The etiology of motion sickness is now usually explained in terms of a qualitatively formulated sensory conflict hypothesis. By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstances, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behavior
    • …
    corecore