1,988 research outputs found

    The inference of gene trees with species trees

    Get PDF
    Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can co-exist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice-versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. In this article we review the various models that have been used to describe the relationship between gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree-species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a better basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree-species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution.Comment: Review article in relation to the "Mathematical and Computational Evolutionary Biology" conference, Montpellier, 201

    Lateral Transfer of Genes and Gene Fragments in Prokaryotes

    Get PDF
    Lateral genetic transfer (LGT) involves the movement of genetic material from one lineage into another and its subsequent incorporation into the new host genome via genetic recombination. Studies in individual taxa have indicated lateral origins for stretches of DNA of greatly varying length, from a few nucleotides to chromosome size. Here we analyze 1,462 sets of single-copy, putatively orthologous genes from 144 fully sequenced prokaryote genomes, asking to what extent complete genes and fragments of genes have been transferred and recombined in LGT. Using a rigorous phylogenetic approach, we find evidence for LGT in at least 476 (32.6%) of these 1,462 gene sets: 286 (19.6%) clearly show one or more “observable recombination breakpoints” within the boundaries of the open reading frame, while a further 190 (13.0%) yield trees that are topologically incongruent with the reference tree but do not contain a recombination breakpoint within the open reading frame. We refer to these gene sets as observable recombination breakpoint positive (ORB+) and negative (ORB−) respectively. The latter are prima facie instances of lateral transfer of an entire gene or beyond. We observe little functional bias between ORB+ and ORB− gene sets, but find that incorporation of entire genes is potentially more frequent in pathogens than in nonpathogens. As ORB+ gene sets are about 50% more common than ORB− sets in our data, the transfer of gene fragments has been relatively frequent, and the frequency of LGT may have been systematically underestimated in phylogenetic studies

    Protein domains as units of genetic transfer

    Full text link
    Genomes evolve as modules. In prokaryotes (and some eukaryotes), genetic material can be transferred between species and integrated into the genome via homologous or illegitimate recombination. There is little reason to imagine that the units of transfer correspond to entire genes; however, such units have not been rigorously characterized. We examined fragmentary genetic transfers in single-copy gene families from 144 prokaryotic genomes and found that breakpoints are located significantly closer to the boundaries of genomic regions that encode annotated structural domains of proteins than expected by chance, particularly when recombining sequences are more divergent. This correlation results from recombination events themselves and not from differential nucleotide substitution. We report the first systematic study relating genetic recombination to structural features at the protein level

    Are Protein Domains Modules of Lateral Genetic Transfer?

    Get PDF
    Background: In prokaryotes and some eukaryotes, genetic material can be transferred laterally among unrelated lineages and recombined into new host genomes, providing metabolic and physiological novelty. Although the process is usually framed in terms of gene sharing (e. g. lateral gene transfer, LGT), there is little reason to imagine that the units of transfer and recombination correspond to entire, intact genes. Proteins often consist of one or more spatially compact structural regions (domains) which may fold autonomously and which, singly or in combination, confer the protein's specific functions. As LGT is frequent in strongly selective environments and natural selection is based on function, we hypothesized that domains might also serve as modules of genetic transfer, i.e. that regions of DNA that are transferred and recombined between lineages might encode intact structural domains of proteins
    • 

    corecore