5,541 research outputs found

    Detecting Falls with Wearable Sensors Using Machine Learning Techniques

    Get PDF
    Cataloged from PDF version of article.Falls are a serious public health problem and possibly life threatening for people in fall risk groups. We develop an automated fall detection system with wearable motion sensor units fitted to the subjects' body at six different positions. Each unit comprises three tri-axial devices (accelerometer, gyroscope, and magnetometer/compass). Fourteen volunteers perform a standardized set of movements including 20 voluntary falls and 16 activities of daily living (ADLs), resulting in a large dataset with 2520 trials. To reduce the computational complexity of training and testing the classifiers, we focus on the raw data for each sensor in a 4 s time window around the point of peak total acceleration of the waist sensor, and then perform feature extraction and reduction. Most earlier studies on fall detection employ rule-based approaches that rely on simple thresholding of the sensor outputs. We successfully distinguish falls from ADLs using six machine learning techniques (classifiers): the k-nearest neighbor (k-NN) classifier, least squares method (LSM), support vector machines (SVM), Bayesian decision making (BDM), dynamic time warping (DTW), and artificial neural networks (ANNs). We compare the performance and the computational complexity of the classifiers and achieve the best results with the k-NN classifier and LSM, with sensitivity, specificity, and accuracy all above 99%. These classifiers also have acceptable computational requirements for training and testing. Our approach would be applicable in real-world scenarios where data records of indeterminate length, containing multiple activities in sequence, are recorded

    Detecting Irregular Patterns in IoT Streaming Data for Fall Detection

    Full text link
    Detecting patterns in real time streaming data has been an interesting and challenging data analytics problem. With the proliferation of a variety of sensor devices, real-time analytics of data from the Internet of Things (IoT) to learn regular and irregular patterns has become an important machine learning problem to enable predictive analytics for automated notification and decision support. In this work, we address the problem of learning an irregular human activity pattern, fall, from streaming IoT data from wearable sensors. We present a deep neural network model for detecting fall based on accelerometer data giving 98.75 percent accuracy using an online physical activity monitoring dataset called "MobiAct", which was published by Vavoulas et al. The initial model was developed using IBM Watson studio and then later transferred and deployed on IBM Cloud with the streaming analytics service supported by IBM Streams for monitoring real-time IoT data. We also present the systems architecture of the real-time fall detection framework that we intend to use with mbientlabs wearable health monitoring sensors for real time patient monitoring at retirement homes or rehabilitation clinics.Comment: 7 page

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Multisensor Data Fusion for Human Activities Classification and Fall Detection

    Get PDF
    Significant research exists on the use of wearable sensors in the context of assisted living for activities recognition and fall detection, whereas radar sensors have been studied only recently in this domain. This paper approaches the performance limitation of using individual sensors, especially for classification of similar activities, by implementing information fusion of features extracted from experimental data collected by different sensors, namely a tri-axial accelerometer, a micro-Doppler radar, and a depth camera. Preliminary results confirm that combining information from heterogeneous sensors improves the overall performance of the system. The classification accuracy attained by means of this fusion approach improves by 11.2% compared to radar-only use, and by 16.9% compared to the accelerometer. Furthermore, adding features extracted from a RGB-D Kinect sensor, the overall classification accuracy increases up to 91.3%

    Matching pursuit-based compressive sensing in a wearable biomedical accelerometer fall diagnosis device

    Get PDF
    There is a significant high fall risk population, where individuals are susceptible to frequent falls and obtaining significant injury, where quick medical response and fall information are critical to providing efficient aid. This article presents an evaluation of compressive sensing techniques in an accelerometer-based intelligent fall detection system modelled on a wearable Shimmer biomedical embedded computing device with Matlab. The presented fall detection system utilises a database of fall and activities of daily living signals evaluated with discrete wavelet transforms and principal component analysis to obtain binary tree classifiers for fall evaluation. 14 test subjects undertook various fall and activities of daily living experiments with a Shimmer device to generate data for principal component analysis-based fall classifiers and evaluate the proposed fall analysis system. The presented system obtains highly accurate fall detection results, demonstrating significant advantages in comparison with the thresholding method presented. Additionally, the presented approach offers advantageous fall diagnostic information. Furthermore, transmitted data accounts for over 80% battery current usage of the Shimmer device, hence it is critical the acceleration data is reduced to increase transmission efficiency and in-turn improve battery usage performance. Various Matching pursuit-based compressive sensing techniques have been utilised to significantly reduce acceleration information required for transmission.Scopu
    corecore