2,149 research outputs found

    Challenges in context-aware mobile language learning: the MASELTOV approach

    Get PDF
    Smartphones, as highly portable networked computing devices with embedded sensors including GPS receivers, are ideal platforms to support context-aware language learning. They can enable learning when the user is en-gaged in everyday activities while out and about, complementing formal language classes. A significant challenge, however, has been the practical implementation of services that can accurately identify and make use of context, particularly location, to offer meaningful language learning recommendations to users. In this paper we review a range of approaches to identifying context to support mobile language learning. We consider how dynamically changing aspects of context may influence the quality of recommendations presented to a user. We introduce the MASELTOV project’s use of context awareness combined with a rules-based recommendation engine to present suitable learning content to recent immigrants in urban areas; a group that may benefit from contextual support and can use the city as a learning environment

    Understanding citizen science and environmental monitoring: final report on behalf of UK Environmental Observation Framework

    Get PDF
    Citizen science can broadly be defined as the involvement of volunteers in science. Over the past decade there has been a rapid increase in the number of citizen science initiatives. The breadth of environmental-based citizen science is immense. Citizen scientists have surveyed for and monitored a broad range of taxa, and also contributed data on weather and habitats reflecting an increase in engagement with a diverse range of observational science. Citizen science has taken many varied approaches from citizen-led (co-created) projects with local community groups to, more commonly, scientist-led mass participation initiatives that are open to all sectors of society. Citizen science provides an indispensable means of combining environmental research with environmental education and wildlife recording. Here we provide a synthesis of extant citizen science projects using a novel cross-cutting approach to objectively assess understanding of citizen science and environmental monitoring including: 1. Brief overview of knowledge on the motivations of volunteers. 2. Semi-systematic review of environmental citizen science projects in order to understand the variety of extant citizen science projects. 3. Collation of detailed case studies on a selection of projects to complement the semi-systematic review. 4. Structured interviews with users of citizen science and environmental monitoring data focussing on policy, in order to more fully understand how citizen science can fit into policy needs. 5. Review of technology in citizen science and an exploration of future opportunities

    Trajectory Reconstruction and Mobility Pattern Analysis Based on Call Detail Record Data

    Get PDF
    Tehnoloogiad, mis kasutavad geograafilisi andmeid, on muutunud meie igapäevaelu tähtsaks osaks. Tänu sellele on kasvanud asukoha andmetemassiliine salvestamine ja kaevandamine. Seni on GPS tehnoloogiad olnud põhiliseks geograafiliste andmete kogumismeetodiks. Sellega paralleelselt on populaarsust kogunud mobiiliandmete kasutamine positsiooni tuvastamiseks ja liikumismustrite analüüsimiseks. Mobiiliandmete (CDR) põhjal trajektooride taastamiseks on vajalik meetodite kohendamine selleks, et tulemused oleksid korrektsed. Tänu sellele, et telekommunikatsiooni ettevõtted on alustanud suuremat koostööd ja hakanud CDR-andmeid järjest rohkem avalikustama, on mobiiliandmete kasutamine mitmetel aladel suurenenud. Töödeldud mobiiliandmed aitavad anda ülevaadet rahvastiku liikumisest erinevates ulatustes. Samal ajal on trajektooride taastamine CDR-andmetest kohati raskendatud võrreldes GPS-andmetega. Suurimaks probleemiks on algus- ja lõpp-positsioonide asukoha määramine, mis on veelgi enam raskendatud juhul kui objekt liigub.Selle lõputöö eesmärgiks on trajektooride taastamine anonüümsete kasutajatepoolt genereeritud CDR-andmete põhjal. Tulemuste valideerimine GPS-andmetega, mis on loodud paralleelselt mobiiliandmetega ning on vajalik selleks, et määrata saadud trajektooride täpsust. Loodud trajektoore saab kasutada objektide, sealhulgas ka inimeste, liikumismustrite analüüsimiseks ja rahvastiku paiknemise tuvastamiseks, mis aitab linnade planeerimisel ja infrastruktuuride optimeerimisel. Lõputöö väljunditeks on trajektooride taastamine ja täpsuse analüüsimine, lisaks sellele inimese liikumismudelite tuvastamine ja tihedamini külastatavate asukohtade identifitseerimine nagu näiteks kodu, töökoht ja poed.Up until now, GPS data has been greatly used for collecting highlyprecise locational data from moving objects including humans. In contrast, mobile phone data is becoming more and more popular in the last few years. The usage of mobile phone data, that is also known as CDR data, has many benefits over the widely used GPS. This means that the methods used for example in GPS trajectory reconstruction, need to have modifications made be compatible with CDR data.The fact that telecommunication companies have started to cooperate moreand share the CDR data with the public is also a boost to the usage of CDRdata. The processed and analyzed CDR data can be used to get an overview ofcrowd movement in different scales, for example traveling inside a city as opposed to between countries. Extracting trajectories from CDR data has numerous complications.This is due to the fact that the data might not be continuous anddiscovering of the starting point of the object in motion is complicated.The goal of this thesis is to use CDR data in the reconstruction of trajectoriesmade by an anonymous user and to validate the results with GPS data generated in parallel to the CDR data. Reconstructed trajectories can be used for movement analysis and population displacement and would help city planning by optimizing the infrastructures.Outcomes of this thesis are the reconstructed trajectories based on CDR dataand the precisions of final paths. Also, the frequency of CDR events is analyzedin addition to distance distribution. After that the areas that the user visits most frequently are extracted, such as home and work locations

    On the Validity of Geosocial Mobility Traces

    Get PDF
    Mobile networking researchers have long searched for largescale, fine-grained traces of human movement, which have remained elusive for both privacy and logistical reasons. Recently, researchers have begun to focus on geosocial mobility traces, e.g. Foursquare checkin traces, because of their availability and scale. But are we conceding correctness in our zeal for data? In this paper, we take initial steps towards quantifying the value of geosocial datasets using a large ground truth dataset gathered from a user study. By comparing GPS traces against Foursquare checkins, we find that a large portion of visited locations is missing from checkins, and most checkin events are either forged or superfluous events. We characterize extraneous checkins, describe possible techniques for their detection, and show that both extraneous and missing checkins introduce significant errors into applications driven by these traces

    A strategic framework to support the implementation of citizen science for environmental monitoring. Final report to SEPA

    Get PDF
    In this report we provide a decision framework that can be used to guide whether and when to use a citizen science approach for environmental monitoring. Before using the decision framework we recommend that five precursors to a citizen science approach are considered

    Creating Full Individual-level Location Timelines from Sparse Social Media Data

    Full text link
    In many domain applications, a continuous timeline of human locations is critical; for example for understanding possible locations where a disease may spread, or the flow of traffic. While data sources such as GPS trackers or Call Data Records are temporally-rich, they are expensive, often not publicly available or garnered only in select locations, restricting their wide use. Conversely, geo-located social media data are publicly and freely available, but present challenges especially for full timeline inference due to their sparse nature. We propose a stochastic framework, Intermediate Location Computing (ILC) which uses prior knowledge about human mobility patterns to predict every missing location from an individual's social media timeline. We compare ILC with a state-of-the-art RNN baseline as well as methods that are optimized for next-location prediction only. For three major cities, ILC predicts the top 1 location for all missing locations in a timeline, at 1 and 2-hour resolution, with up to 77.2% accuracy (up to 6% better accuracy than all compared methods). Specifically, ILC also outperforms the RNN in settings of low data; both cases of very small number of users (under 50), as well as settings with more users, but with sparser timelines. In general, the RNN model needs a higher number of users to achieve the same performance as ILC. Overall, this work illustrates the tradeoff between prior knowledge of heuristics and more data, for an important societal problem of filling in entire timelines using freely available, but sparse social media data.Comment: 10 pages, 8 figures, 2 table
    corecore