84 research outputs found

    A Multi-Tier Distributed fog-based Architecture for Early Prediction of Epileptic Seizures

    Get PDF
    Epilepsy is the fourth most common neurological problem. With 50 million people living with epilepsy worldwide, about one in 26 people will continue experiencing recurring seizures during their lifetime. Epileptic seizures are characterized by uncontrollable movements and can cause loss of awareness. Despite the optimal use of antiepileptic medications, seizures are still difficult to control due to their sudden and unpredictable nature. Such seizures can put the lives of patients and others at risk. For example, seizure attacks while patients are driving could affect their ability to control a vehicle and could result in injuries to the patients as well as others. Notifying patients before the onset of seizures can enable them to avoid risks and minimize accidents, thus, save their lives. Early and accurate prediction of seizures can play a significant role in improving patients’ quality of life and helping doctors to administer medications through providing a historical overview of patient's condition over time. The individual variability and the dynamic disparity in differentiating between the pre-ictal phase (a period before the onset of the seizure) and other seizures phases make the early prediction of seizures a challenging task. Although several research projects have focused on developing a reliable seizure prediction model, numerous challenges still exist and need to be addressed. Most of the existing approaches are not suitable for real-time settings, which requires bio-signals collection and analysis in real-time. Various methods were developed based on the analysis of EEG signals without considering the notification latency and computational cost to support monitoring of multiple patients. Limited approaches were designed based on the analysis of ECG signals. ECG signals can be collected using consumer wearable devices and are suitable for light-weight real-time analysis. Moreover, existing prediction methods were developed based on the analysis of seizure state and ignored the investigation of pre-ictal state. The analysis of the pre-ictal state is essential in the prediction of seizures at an early stage. Therefore, there is a crucial need to design a novel computing model for early prediction of epileptic seizures. This model would greatly assist in improving the patients' quality of lives. This work proposes a multi-tier architecture for early prediction of seizures based on the analysis of two vital signs, namely, Electrocardiography (ECG) and Electroencephalogram (EEG) signals. The proposed architecture comprises of three tiers: (1) sensing at the first tier, (2) lightweight analysis based on ECG signals at the second tier, and (3) deep analysis based on EEG signals at the third tier. The proposed architecture is developed to leverage the potential of fog computing technology at the second tier for a real-time signal analytics and ubiquitous response. The proposed architecture can enable the early prediction of epileptic seizures, reduce the notification latency, and minimize the energy consumption on real-time data transmissions. Moreover, the proposed architecture is designed to allow for both lightweight and extensive analytics, thus make accurate and reliable decisions. The proposed lightweight model is formulated using the analysis of ECG signals to detect the pre-ictal state. The lightweight model utilizes the Least Squares Support Vector Machines (LS-SVM) classifier, while the proposed extensive analytics model analyzes EEG signals and utilizes Deep Belief Network (DBN) to provide an accurate classification of the patient’s state. The performance of the proposed architecture is evaluated in terms of latency minimization and energy consumption in comparison with the cloud. Moreover, the performance of the proposed prediction models is evaluated using three datasets. Various performance metrics were used to investigate the prediction model performance, including: accuracy, sensitivity, specificity, and F1-Measure. The results illustrate the merits of the proposed architecture and show significant improvement in the early prediction of seizures in terms of accuracy, sensitivity, and specificity

    Deep Learning and parallelization of Meta-heuristic Methods for IoT Cloud

    Get PDF
    Healthcare 4.0 is one of the Fourth Industrial Revolution’s outcomes that make a big revolution in the medical field. Healthcare 4.0 came with more facilities advantages that improved the average life expectancy and reduced population mortality. This paradigm depends on intelligent medical devices (wearable devices, sensors), which are supposed to generate a massive amount of data that need to be analyzed and treated with appropriate data-driven algorithms powered by Artificial Intelligence such as machine learning and deep learning (DL). However, one of the most significant limits of DL techniques is the long time required for the training process. Meanwhile, the realtime application of DL techniques, especially in sensitive domains such as healthcare, is still an open question that needs to be treated. On the other hand, meta-heuristic achieved good results in optimizing machine learning models. The Internet of Things (IoT) integrates billions of smart devices that can communicate with one another with minimal human intervention. IoT technologies are crucial in enhancing several real-life smart applications that can improve life quality. Cloud Computing has emerged as a key enabler for IoT applications because it provides scalable and on-demand, anytime, anywhere access to the computing resources. In this thesis, we are interested in improving the efficacity and performance of Computer-aided diagnosis systems in the medical field by decreasing the complexity of the model and increasing the quality of data. To accomplish this, three contributions have been proposed. First, we proposed a computer aid diagnosis system for neonatal seizures detection using metaheuristics and convolutional neural network (CNN) model to enhance the system’s performance by optimizing the CNN model. Secondly, we focused our interest on the covid-19 pandemic and proposed a computer-aided diagnosis system for its detection. In this contribution, we investigate Marine Predator Algorithm to optimize the configuration of the CNN model that will improve the system’s performance. In the third contribution, we aimed to improve the performance of the computer aid diagnosis system for covid-19. This contribution aims to discover the power of optimizing the data using different AI methods such as Principal Component Analysis (PCA), Discrete wavelet transform (DWT), and Teager Kaiser Energy Operator (TKEO). The proposed methods and the obtained results were validated with comparative studies using benchmark and public medical data

    Cascaded WLAN-FWA Networking and Computing Architecture for Pervasive In-Home Healthcare

    Full text link
    Pervasive healthcare is a promising assisted-living solution for chronic patients. However, current cutting-edge communication technologies are not able to strictly meet the requirements of these applications, especially in the case of life-threatening events. To bridge this gap, this paper proposes a new architecture to support indoor healthcare monitoring, with a focus on epileptic patients. Several novel elements are introduced. The first element is the cascading of a WLAN and a cellular network, where IEEE 802.11ax is used for the wireless local area network to collect physiological and environmental data in-home and 5G-enabled Fixed Wireless Access links transfer them to a remote hospital. The second element is the extension of the network slicing concept to the WLAN, and the introduction of two new slice types to support both regular monitoring and emergency handling. Moreover, the inclusion of local computing capabilities at the WLAN router, together with a mobile edge computing resource, represents a further architectural enhancement. Local computation is required to trigger not only health-related alarms, but also the network slicing change in case of emergency: in fact, proper radio resource scheduling is necessary for the cascaded networks to handle healthcare traffic together with other promiscuous everyday communication services. Numerical results demonstrate the effectiveness of the proposed approach while highlighting the performance gain achieved with respect to baseline solutions

    Neuro-critical multimodal Edge-AI monitoring algorithm and IoT system design and development

    Get PDF
    In recent years, with the continuous development of neurocritical medicine, the success rate of treatment of patients with traumatic brain injury (TBI) has continued to increase, and the prognosis has also improved. TBI patients' condition is usually very complicated, and after treatment, patients often need a more extended time to recover. The degree of recovery is also related to prognosis. However, as a young discipline, neurocritical medicine still has many shortcomings. Especially in most hospitals, the condition of Neuro-intensive Care Unit (NICU) is uneven, the equipment has limited functionality, and there is no unified data specification. Most of the instruments are cumbersome and expensive, and patients often need to pay high medical expenses. Recent years have seen a rapid development of big data and artificial intelligence (AI) technology, which are advancing the medical IoT field. However, further development and a wider range of applications of these technologies are needed to achieve widespread adoption. Based on the above premises, the main contributions of this thesis are the following. First, the design and development of a multi-modal brain monitoring system including 8-channel electroencephalography (EEG) signals, dual-channel NIRS signals, and intracranial pressure (ICP) signals acquisition. Furthermore, an integrated display platform for multi-modal physiological data to display and analysis signals in real-time was designed. This thesis also introduces the use of the Qt signal and slot event processing mechanism and multi-threaded to improve the real-time performance of data processing to a higher level. In addition, multi-modal electrophysiological data storage and processing was realized on cloud server. The system also includes a custom built Django cloud server which realizes real-time transmission between server and WeChat applet. Based on WebSocket protocol, the data transmission delay is less than 10ms. The analysis platform can be equipped with deep learning models to realize the monitoring of patients with epileptic seizures and assess the level of consciousness of Disorders of Consciousness (DOC) patients. This thesis combines the standard open-source data set CHB-MIT, a clinical data set provided by Huashan Hospital, and additional data collected by the system described in this thesis. These data sets are merged to build a deep learning network model and develop related applications for automatic disease diagnosis for smart medical IoT systems. It mainly includes the use of the clinical data to analyze the characteristics of the EEG signal of DOC patients and building a CNN model to evaluate the patient's level of consciousness automatically. Also, epilepsy is a common disease in neuro-intensive care. In this regard, this thesis also analyzes the differences of various deep learning model between the CHB-MIT data set and clinical data set for epilepsy monitoring, in order to select the most appropriate model for the system being designed and developed. Finally, this thesis also verifies the AI-assisted analysis model.. The results show that the accuracy of the CNN network model based on the evaluation of consciousness disorder on the clinical data set reaches 82%. The CNN+STFT network model based on epilepsy monitoring reaches 90% of the accuracy rate in clinical data. Also, the multi-modal brain monitoring system built is fully verified. The EEG signal collected by this system has a high signal-to-noise ratio, strong anti-interference ability, and is very stable. The built brain monitoring system performs well in real-time and stability. Keywords: TBI, Neurocritical care, Multi-modal, Consciousness Assessment, seizures detection, deep learning, CNN, IoT

    EMAP: A Cloud-Edge Hybrid Framework for EEG Monitoring and Cross-Correlation Based Real-time Anomaly Prediction

    Full text link
    State-of-the-art techniques for detecting, or predicting, neurological disorders (1) focus on predicting each disorder individually, and are (2) computationally expensive, leading to a delay that can potentially render the prediction useless, especially in critical events. Towards this, we present a real-time two-tiered framework called EMAP, which cross-correlates the input with all the EEG signals in our mega-database (a combination of multiple EEG datasets) at the cloud, while tracking the signal in real-time at the edge, to predict the occurrence of a neurological anomaly. Using the proposed framework, we have demonstrated a prediction accuracy of up to 94% for the three different anomalies that we have tested.Comment: Accepted for Publication at the 57th Design Automation Conference (DAC), July 2020, San Francisco, CA, US

    Novel Processing and Transmission Techniques Leveraging Edge Computing for Smart Health Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Sensing and Artificial Intelligent Maternal-Infant Health Care Systems: A Review

    Get PDF
    Currently, information and communication technology (ICT) allows health institutions to reach disadvantaged groups in rural areas using sensing and artificial intelligence (AI) technologies. Applications of these technologies are even more essential for maternal and infant health, since maternal and infant health is vital for a healthy society. Over the last few years, researchers have delved into sensing and artificially intelligent healthcare systems for maternal and infant health. Sensors are exploited to gauge health parameters, and machine learning techniques are investigated to predict the health conditions of patients to assist medical practitioners. Since these healthcare systems deal with large amounts of data, significant development is also noted in the computing platforms. The relevant literature reports the potential impact of ICT-enabled systems for improving maternal and infant health. This article reviews wearable sensors and AI algorithms based on existing systems designed to predict the risk factors during and after pregnancy for both mothers and infants. This review covers sensors and AI algorithms used in these systems and analyzes each approach with its features, outcomes, and novel aspects in chronological order. It also includes discussion on datasets used and extends challenges as well as future work directions for researchers

    Exploring the Landscape of Ubiquitous In-home Health Monitoring: A Comprehensive Survey

    Full text link
    Ubiquitous in-home health monitoring systems have become popular in recent years due to the rise of digital health technologies and the growing demand for remote health monitoring. These systems enable individuals to increase their independence by allowing them to monitor their health from the home and by allowing more control over their well-being. In this study, we perform a comprehensive survey on this topic by reviewing a large number of literature in the area. We investigate these systems from various aspects, namely sensing technologies, communication technologies, intelligent and computing systems, and application areas. Specifically, we provide an overview of in-home health monitoring systems and identify their main components. We then present each component and discuss its role within in-home health monitoring systems. In addition, we provide an overview of the practical use of ubiquitous technologies in the home for health monitoring. Finally, we identify the main challenges and limitations based on the existing literature and provide eight recommendations for potential future research directions toward the development of in-home health monitoring systems. We conclude that despite extensive research on various components needed for the development of effective in-home health monitoring systems, the development of effective in-home health monitoring systems still requires further investigation.Comment: 35 pages, 5 figure

    Automated Classification for Electrophysiological Data: Machine Learning Approaches for Disease Detection and Emotion Recognition

    Get PDF
    Smart healthcare is a health service system that utilizes technologies, e.g., artificial intelligence and big data, to alleviate the pressures on healthcare systems. Much recent research has focused on the automatic disease diagnosis and recognition and, typically, our research pays attention on automatic classifications for electrophysiological signals, which are measurements of the electrical activity. Specifically, for electrocardiogram (ECG) and electroencephalogram (EEG) data, we develop a series of algorithms for automatic cardiovascular disease (CVD) classification, emotion recognition and seizure detection. With the ECG signals obtained from wearable devices, the candidate developed novel signal processing and machine learning method for continuous monitoring of heart conditions. Compared to the traditional methods based on the devices at clinical settings, the developed method in this thesis is much more convenient to use. To identify arrhythmia patterns from the noisy ECG signals obtained through the wearable devices, CNN and LSTM are used, and a wavelet-based CNN is proposed to enhance the performance. An emotion recognition method with a single channel ECG is developed, where a novel exploitative and explorative GWO-SVM algorithm is proposed to achieve high performance emotion classification. The attractive part is that the proposed algorithm has the capability to learn the SVM hyperparameters automatically, and it can prevent the algorithm from falling into local solutions, thereby achieving better performance than existing algorithms. A novel EEG-signal based seizure detector is developed, where the EEG signals are transformed to the spectral-temporal domain, so that the dimension of the input features to the CNN can be significantly reduced, while the detector can still achieve superior detection performance
    • …
    corecore