254 research outputs found

    Emergent relational schemas for RDF

    Get PDF

    Linked Open Data - Creating Knowledge Out of Interlinked Data: Results of the LOD2 Project

    Get PDF
    Database Management; Artificial Intelligence (incl. Robotics); Information Systems and Communication Servic

    Semantic technologies for supporting KDD processes

    Get PDF
    209 p.Achieving a comfortable thermal situation within buildings with an efficient use of energy remains still an open challenge for most buildings. In this regard, IoT (Internet of Things) and KDD (Knowledge Discovery in Databases) processes may be combined to solve these problems, even though data analysts may feel overwhelmed by heterogeneity and volume of the data to be considered. Data analysts could benefit from an application assistant that supports them throughout the KDD process. This research work aims at supporting data analysts through the different KDD phases towards the achievement of energy efficiency and thermal comfort in tertiary buildings. To do so, the EEPSA (Energy Efficiency Prediction Semantic Assistant) is proposed, which aids data analysts discovering the most relevant variables for the matter at hand, and informs them about relationships among relevant data. This assistant leverages Semantic Technologies such as ontologies, ontology-driven rules and ontology-driven data access. More specifically, the EEPSA ontology is the cornerstone of the assistant. This ontology is developed on top of three ODPs (Ontology Design Patterns) and it is designed so that its customization to address similar problems in different types of buildings can be approached methodically

    Engineering Agile Big-Data Systems

    Get PDF
    To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, the value of the data can be such that exhaustive testing is necessary before any new feature can be added to the existing design. In most cases, the precise details of requirements, policies and data will change during the lifetime of the system, forcing a choice between expensive modification and continued operation with an inefficient design.Engineering Agile Big-Data Systems outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles. It discusses tools which can be used to achieve these goals, and, in a number of case studies, shows how the tools and methodology have been used to improve a variety of academic and business systems

    Intelligent Information Access to Linked Data - Weaving the Cultural Heritage Web

    Get PDF
    The subject of the dissertation is an information alignment experiment of two cultural heritage information systems (ALAP): The Perseus Digital Library and Arachne. In modern societies, information integration is gaining importance for many tasks such as business decision making or even catastrophe management. It is beyond doubt that the information available in digital form can offer users new ways of interaction. Also, in the humanities and cultural heritage communities, more and more information is being published online. But in many situations the way that information has been made publicly available is disruptive to the research process due to its heterogeneity and distribution. Therefore integrated information will be a key factor to pursue successful research, and the need for information alignment is widely recognized. ALAP is an attempt to integrate information from Perseus and Arachne, not only on a schema level, but to also perform entity resolution. To that end, technical peculiarities and philosophical implications of the concepts of identity and co-reference are discussed. Multiple approaches to information integration and entity resolution are discussed and evaluated. The methodology that is used to implement ALAP is mainly rooted in the fields of information retrieval and knowledge discovery. First, an exploratory analysis was performed on both information systems to get a first impression of the data. After that, (semi-)structured information from both systems was extracted and normalized. Then, a clustering algorithm was used to reduce the number of needed entity comparisons. Finally, a thorough matching was performed on the different clusters. ALAP helped with identifying challenges and highlighted the opportunities that arise during the attempt to align cultural heritage information systems

    A framework and computer system for knowledge-level acquisition, representation, and reasoning with process knowledge

    Full text link
    The development of knowledge-based systems is usually approached through the combined skills of software and knowledge engineers (SEs and KEs, respectively) and of subject matter experts (SMEs). One of the most critical steps in this task aims at transferring knowledge from SMEs’ expertise to formal, machine-readable representations, which allow systems to reason with such knowledge. However, this process is costly and error prone. Alleviating such knowledge acquisition bottleneck requires enabling SMEs with the means to produce the target knowledge representations, minimizing the intervention of KEs. This is especially difficult in the case of complex knowledge types like processes. The analysis of scientific domains like Biology, Chemistry, and Physics uncovers: (i) that process knowledge is the single most frequent type of knowledge occurring in such domains and (ii) specific solutions need to be devised in order to allow SMEs to represent it in a computational form. We present a framework and computer system for the acquisition and representation of process knowledge in scientific domains by SMEs. We propose methods and techniques to enable SMEs to acquire process knowledge from the domains, to formally represent it, and to reason about it. We have developed an abstract process metamodel and a library of problem solving methods (PSMs), which support these tasks, respectively providing the terminology for SME-tailored process diagrams and an abstract formalization of the strategies needed for reasoning about processes. We have implemented this approach as part of the DarkMatter system and formally evaluated it in the context of the intermediate evaluation of Project Halo, an initiative aiming at the creation of question answering systems by SMEs

    Engineering Agile Big-Data Systems

    Get PDF
    To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, the value of the data can be such that exhaustive testing is necessary before any new feature can be added to the existing design. In most cases, the precise details of requirements, policies and data will change during the lifetime of the system, forcing a choice between expensive modification and continued operation with an inefficient design.Engineering Agile Big-Data Systems outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles. It discusses tools which can be used to achieve these goals, and, in a number of case studies, shows how the tools and methodology have been used to improve a variety of academic and business systems
    • …
    corecore