878 research outputs found

    Mapping Changes in Fractional Vegetation Cover on the Namib Gravel Plains with Satellite-Retrieved Land Surface Emissivity Data

    Get PDF
    Monitoring changes in vegetation cover over time is crucial for understanding the spatial distribution of rainfall, as well as the dynamics of plants and animals in the Namib desert. Traditional vegetation indices have limitations in capturing changes in vegetation cover within water-limited ecosystems like the Namib gravel plains. Spectral emissivity derived from thermal infrared remote sensing has recently emerged as a promising tool for distinguishing between bare ground and non-green vegetation in arid environments. This study investigates the potential of satellite-derived emissivities for mapping changes in fractional vegetation cover across the Namib gravel plains. Analyzing Moderate Resolution Imaging Spectroradiometer (MODIS) band 29 (λ = 8.55 µm) emissivity time series from 2001 to 2021, our findings demonstrate the ability of both Normalized Difference Vegetation Index (NDVI) and emissivity to detect sudden vegetation growth on the gravel plains. Emissivity additionally allows monitoring the extent of desiccated grass over several years after a rainfall event. Our results support a relationship between the change in fractional vegetation cover, the amount of rainfall and emissivity change magnitude. Information from NDVI and emissivity therefore provide complementary information for assessing vegetation in arid environments

    The development of a temporal-BRDF model-based approach to change detection, an application to the identification and delineation of fire affected areas.

    Get PDF
    Although large quantities of southern Africa burn every year, minimal information is available relating to the fire regimes of this area. This study develops a new, generic approach to change detection, applicable to the identification of land cover change from high temporal and moderate spatial resolution satellite data. Traditional change detection techniques have several key limitations which are identified and addressed in this work. In particular these approaches fail to account for directional effects in the remote sensing signal introduced by variations in the solar and sensing geometry, and are sensitive to underlying phenological changes in the surface as well as noise in the data due to cloud or atmospheric contamination. This research develops a bi-directional, model-based change detection algorithm. An empirical temporal component is incorporated into a semi-empirical linear BRDF model. This may be fitted to a long time series of reflectance with less sensitivity to the presence of underlying phenological change. Outliers are identified based on an estimation of noise in the data and the calculation of uncertainty in the model parameters and are removed from the sequence. A "step function kernel" is incorporated into the formulation in order to detect explicitly sudden step-like changes in the surface reflectance induced by burning. The change detection model is applied to the problem of locating and mapping fire affected areas from daily moderate spatial resolution satellite data, and an indicator of burn severity is introduced. Monthly burned area datasets for a 2400km by 1200km area of southern Africa detailing the day and severity of burning are created for a five year period (2000-2004). These data are analysed and the fire regimes of southern African ecosystems during this time are characterised. The results highlight the extent of the burning which is taking place within southern Africa, with between 27-32% of the study area burning during each of the five years of observation. Higher fire frequencies are exhibited by savanna and grassland ecosystems, while more dense vegetation types such as shrublands and deciduous broadleaf forests burn less frequently. In addition the areas which burn more frequently do so with a greater severity, with a positive relationship identified between the frequency and the severity of burning

    Analyzing Vegetation Trends with Sensor Data from Earth Observation Satellites

    Get PDF
    Abstract This thesis aims to advance the analysis of nonlinear trends in time series of vegetation data from Earth observation satellite sensors. This is accomplished by developing fast, efficient methods suitable for large volumes of data. A set of methods, tools, and a framework are developed and verified using data from regions containing vegetation change hotspots. First, a polynomial-fitting scheme is tested and applied to annual Global Inventory Modeling and Mapping Studies (GIMMS)–Normalized Difference Vegetation Index (NDVI) observations for North Africa for the period 1982–2006. Changes in annual observations are divided between linear and nonlinear (cubic, quadratic, and concealed) trend behaviors. A concealed trend is a nonlinear change which does not result in a net change in the amount of vegetation over the period. Second, a systematic comparison between parametric and non-parametric techniques for analyzing trends in annual GIMMS-NDVI data is performed at fifteen sites (located in Africa, Spain, Italy, and Iraq) to compare how trend type and departure from normality assumptions affect each method’s accuracy in detecting long-term change. Third, a user-friendly program (Detecting Breakpoints and Estimating Segments in Trend, DBEST) has been developed which generalizes vegetation trends to main features, and characterizes vegetation trend changes. The outputs of DBEST are the simplified trend, the change type (abrupt or non-abrupt), and estimates for the characteristics (time and magnitude) of the change. DBEST is tested and evaluated using both simulated NDVI data, and actual NDVI time series for Iraq for the period 1982-2006. Finally, a decision-making framework is presented to help analysts perform comprehensive analyses of trend/change in time series of satellite sensor data. The framework is based on a conceptual model of the main aspects of trend analyses, including identification of the research question, the required data, the appropriate variables, and selection of efficient analysis methods. To verify the framework, it is applied to four case studies (located in Burkina Faso, Spain, Sweden, and Senegal) using Moderate-resolution Imaging Spectroradiometer (MODIS)–NDVI data for the period 2000–2013. Each of the case studies successfully achieved its research aim(s), showing that the framework can achieve the main goal of the study which is to advance the analysis of nonlinear changes in vegetation. The methods developed in this thesis can help to contribute more accurate information about vegetation dynamics to the field of land cover change research

    Detecting Inter-Annual Variations in the Phenology of Evergreen Conifers Using Long-Term MODIS Vegetation Index Time Series

    Get PDF
    Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI). This study investigates the potential of a Photochemical Reflectance Index (PRI), which has been linked to vegetation light use efficiency, to improve the accuracy of MODIS-based estimates of phenology in an evergreen conifer forest. Timings of the start and end of the growing season (SGS and EGS) were derived from a 13-year-long time series of PRI and NDVI based on a MAIAC (multi-angle implementation of atmospheric correction) processed MODIS dataset and standard MODIS NDVI product data. The derived dates were validated with phenology estimates from ground-based flux tower measurements of ecosystem productivity. Significant correlations were found between the MAIAC time series and ground-estimated SGS (R-2 = 0.36-0.8), which is remarkable since previous studies have found it difficult to observe inter-annual phenological variations in evergreen vegetation from satellite data. The considerably noisier NDVI product could not accurately predict SGS, and EGS could not be derived successfully from any of the time series. While the strongest relationship overall was found between SGS derived from the ground data and PRI, MAIAC NDVI exhibited high correlations with SGS more consistently (R-2 > 0.6 in all cases). The results suggest that PRI can serve as an effective indicator of spring seasonal transitions, however, additional work is necessary to confirm the relationships observed and to further explore the usefulness of MODIS PRI for detecting phenology.Peer reviewe

    Mapping the Spatial Distribution of Winter Crops at Sub-Pixel Level Using AVHRR NDVI Time Series and Neural Nets

    Get PDF
    For large areas, it is difficult to assess the spatial distribution and inter-annual variation of crop acreages through field surveys. Such information, however, is of great value for governments, land managers, planning authorities, commodity traders and environmental scientists. Time series of coarse resolution imagery offer the advantage of global coverage at low costs, and are therefore suitable for large-scale crop type mapping. Due to their coarse spatial resolution, however, the problem of mixed pixels has to be addressed. Traditional hard classification approaches cannot be applied because of sub-pixel heterogeneity. We evaluate neural networks as a modeling tool for sub-pixel crop acreage estimation. The proposed methodology is based on the assumption that different cover type proportions within coarse pixels prompt changes in time profiles of remotely sensed vegetation indices like the Normalized Difference Vegetation Index (NDVI). Neural networks can learn the relation between temporal NDVI signatures and the sought crop acreage information. This learning step permits a non-linear unmixing of the temporal information provided by coarse resolution satellite sensors. For assessing the feasibility and accuracy of the approach, a study region in central Italy (Tuscany) was selected. The task consisted of mapping the spatial distribution of winter crops abundances within 1 km AVHRR pixels between 1988 and 2001. Reference crop acreage information for network training and validation was derived from high resolution Thematic Mapper/Enhanced Thematic Mapper (TM/ETM+) images and official agricultural statistics. Encouraging results were obtained demonstrating the potential of the proposed approach. For example, the spatial distribution of winter crop acreage at sub-pixel level was mapped with a cross-validated coefficient of determination of 0.8 with respect to the reference information from high resolution imagery. For the eight years for which reference information was available, the root mean squared error (RMSE) of winter crop acreage at sub-pixel level was 10%. When combined with current and future sensors, such as MODIS and Sentinel-3, the unmixing of AVHRR data can help in the building of an extended time series of crop distributions and cropping patterns dating back to the 80s.JRC.H.4-Monitoring Agricultural Resource

    Analyzing the phenologic dynamics of kudzu (Pueraria montana) infestations using remote sensing and the normalized difference vegetation index.

    Get PDF
    Non-native invasive species are one of the major threats to worldwide ecosystems. Kudzu (Pueraria montana) is a fast-growing vine native to Asia that has invaded regions in the United States making management of this species an important issue. Estimated normalized difference vegetation index (NDVI) values for the years 2000 to 2015 were calculated using data collected by Landsat and MODIS platforms for three infestation sites in Kentucky. The STARFM image-fusing algorithm was used to combine Landsat- and MODIS-derived NDVI into time series with a 30 m spatial resolution and 16 day temporal resolution. The fused time series was decomposed using the Breaks for Additive Season and Trend (BFAST) algorithm. Results showed that fused NDVI could be estimated for the three sites but could not detect changes over time. Combining this method with field data collection and other types of analyses may be useful for kudzu monitoring and management

    Remote sensing phenology at European northern latitudes - From ground spectral towers to satellites

    Get PDF
    Plant phenology exerts major influences on carbon, water, and energy exchanges between atmosphere and ecosystems, provides feedbacks to climate, and affects ecosystem functioning and services. Great efforts have been spent in studying plant phenology over the past decades, but there are still large uncertainties and disputations in phenology estimation, trends, and its climate sensitivities. This thesis aims to reduce these uncertainties through analyzing ground spectral sampling, developing methods for in situ light sensor calibration, and exploring a new spectral index for reliable retrieval of remote sensing phenology and climate sensitivity estimation at European northern latitudes. The ground spectral towers use light sensors of either nadir or off-nadir viewing to measure reflected radiation, yet how plants in the sensor view contribute differently to the measured signals, and necessary in situ calibrations are often overlooked, leading to great uncertainties in ground spectral sampling of vegetation. It was found that the ground sampling points in the sensor view follow a Cauchy distribution, which is further modulated by the sensor directional response function. We proposed in situ light sensor calibration methods and showed that the user in situ calibration is more reliable than manufacturer’s lab calibration when our proposed calibration procedures are followed. By taking the full advantages of more reliable and standardized reflectance, we proposed a plant phenology vegetation index (PPI), which is derived from a radiative transfer equation and uses red and near infrared reflectance. PPI shows good linearity with canopy green leaf area index, and is correlated with gross primary productivity, better than other vegetation indices in our test. With suppressed snow influences, PPI shows great potentials for retrieving phenology over coniferous-dominated boreal forests. PPI was used to retrieve plant phenology from MODIS nadir BRDF-adjusted reflectance at European northern latitudes for the period 2000-2014. We estimated the trend of start of growing season (SOS), end of growing season (EOS), length of growing season (LOS), and the PPI integral for the time span, and found significant changes in most part of the region, with an average rate of -0.39 days·year-1 in SOS, 0.48 days·year-1 in EOS, 0.87 days·year-1 in LOS, and 0.79%·year-1 in the PPI integral over the past 15 years. We found that the plant phenology was significantly affected by climate in most part of the region, with an average sensitivity to temperature: SOS at -3.43 days·°C-1, EOS at 1.27 days·°C-1, LOS at 3.16 days·°C-1, and PPI integral at 2.29 %·°C-1, and to precipitation: SOS at 0.28 days∙cm-1, EOS at 0.05 days∙cm-1, LOS at 0.04 days∙cm-1, and PPI integral at -0.07%∙cm-1. These phenology variations were significantly related to decadal variations of atmospheric circulations, including the North Atlantic Oscillation and the Arctic Oscillation. The methods developed in this thesis can help to improve the reliability of long-term field spectral measurements and to reduce uncertainties in remote sensing phenology retrieval and climate sensitivity estimation
    corecore