1,820 research outputs found

    Advanced content-based semantic scene analysis and information retrieval: the SCHEMA project

    Get PDF
    The aim of the SCHEMA Network of Excellence is to bring together a critical mass of universities, research centers, industrial partners and end users, in order to design a reference system for content-based semantic scene analysis, interpretation and understanding. Relevant research areas include: content-based multimedia analysis and automatic annotation of semantic multimedia content, combined textual and multimedia information retrieval, semantic -web, MPEG-7 and MPEG-21 standards, user interfaces and human factors. In this paper, recent advances in content-based analysis, indexing and retrieval of digital media within the SCHEMA Network are presented. These advances will be integrated in the SCHEMA module-based, expandable reference system

    Indexing, browsing and searching of digital video

    Get PDF
    Video is a communications medium that normally brings together moving pictures with a synchronised audio track into a discrete piece or pieces of information. The size of a “piece ” of video can variously be referred to as a frame, a shot, a scene, a clip, a programme or an episode, and these are distinguished by their lengths and by their composition. We shall return to the definition of each of these in section 4 this chapter. In modern society, video is ver

    Indexing Techniques for Image and Video Databases: an approach based on Animate Vision Paradigm

    Get PDF
    [ITALIANO]In questo lavoro di tesi vengono presentate e discusse delle innovative tecniche di indicizzazione per database video e di immagini basate sul paradigma della “Animate Vision” (Visione Animata). Da un lato, sarà mostrato come utilizzando, quali algoritmi di analisi di una data immagine, alcuni meccanismi di visione biologica, come i movimenti saccadici e le fissazioni dell'occhio umano, sia possibile ottenere un query processing in database di immagini più efficace ed efficiente. In particolare, verranno discussi, la metodologia grazie alla quale risulta possibile generare due sequenze di fissazioni, a partire rispettivamente, da un'immagine di query I_q ed una di test I_t del data set, e, come confrontare tali sequenze al fine di determinare una possibile misura della similarità (consistenza) tra le due immagini. Contemporaneamente, verrà discusso come tale approccio unito a tecniche classiche di clustering possa essere usato per scoprire le associazioni semantiche nascoste tra immagini, in termini di categorie, che, di contro, permettono un'automatica pre-classificazione (indicizzazione) delle immagini e possono essere usate per guidare e migliorare il processo di query. Saranno presentati, infine, dei risultati preliminari e l'approccio proposto sarà confrontato con le più recenti tecniche per il recupero di immagini descritte in letteratura. Dall'altro lato, sarà mostrato come utilizzando la precedente rappresentazione “foveata” di un'immagine, risulti possibile partizionare un video in shot. Più precisamente, il metodo per il rilevamento dei cambiamenti di shot si baserà sulla computazione, in ogni istante di tempo, della misura di consistenza tra le sequenze di fissazioni generate da un osservatore ideale che guarda il video. Lo schema proposto permette l'individuazione, attraverso l'utilizzo di un'unica tecnica anziché di più metodi dedicati, sia delle transizioni brusche sia di quelle graduali. Vengono infine mostrati i risultati ottenuti su varie tipologie di video e, come questi, validano l'approccio proposto. / [INGLESE]In this dissertation some novel indexing techniques for video and image database based on “Animate Vision” Paradigm are presented and discussed. From one hand, it will be shown how, by embedding within image inspection algorithms active mechanisms of biological vision such as saccadic eye movements and fixations, a more effective query processing in image database can be achieved. In particular, it will be discussed the way to generate two fixation sequences from a query image I_q and a test image I_t of the data set, respectively, and how to compare the two sequences in order to compute a possible similarity (consistency) measure between the two images. Meanwhile, it will be shown how the approach can be used with classical clustering techniques to discover and represent the hidden semantic associations among images, in terms of categories, which, in turn, allow an automatic pre-classification (indexing), and can be used to drive and improve the query processing. Eventually, preliminary results will be presented and the proposed approach compared with the most recent techniques for image retrieval described in the literature. From the other one, it will be discussed how by taking advantage of such foveated representation of an image, it is possible to partitioning of a video into shots. More precisely, the shot-change detection method will be based on the computation, at each time instant, of the consistency measure of the fixation sequences generated by an ideal observer looking at the video. The proposed scheme aims at detecting both abrupt and gradual transitions between shots using a single technique, rather than a set of dedicated methods. Results on videos of various content types are reported and validate the proposed approach

    Highly efficient low-level feature extraction for video representation and retrieval.

    Get PDF
    PhDWitnessing the omnipresence of digital video media, the research community has raised the question of its meaningful use and management. Stored in immense multimedia databases, digital videos need to be retrieved and structured in an intelligent way, relying on the content and the rich semantics involved. Current Content Based Video Indexing and Retrieval systems face the problem of the semantic gap between the simplicity of the available visual features and the richness of user semantics. This work focuses on the issues of efficiency and scalability in video indexing and retrieval to facilitate a video representation model capable of semantic annotation. A highly efficient algorithm for temporal analysis and key-frame extraction is developed. It is based on the prediction information extracted directly from the compressed domain features and the robust scalable analysis in the temporal domain. Furthermore, a hierarchical quantisation of the colour features in the descriptor space is presented. Derived from the extracted set of low-level features, a video representation model that enables semantic annotation and contextual genre classification is designed. Results demonstrate the efficiency and robustness of the temporal analysis algorithm that runs in real time maintaining the high precision and recall of the detection task. Adaptive key-frame extraction and summarisation achieve a good overview of the visual content, while the colour quantisation algorithm efficiently creates hierarchical set of descriptors. Finally, the video representation model, supported by the genre classification algorithm, achieves excellent results in an automatic annotation system by linking the video clips with a limited lexicon of related keywords

    An approach to summarize video data in compressed domain

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2007Includes bibliographical references (leaves: 54-56)Text in English; Abstract: Turkish and Englishx, 59 leavesThe requirements to represent digital video and images efficiently and feasibly have collected great efforts on research, development and standardization over past 20 years. These efforts targeted a vast area of applications such as video on demand, digital TV/HDTV broadcasting, multimedia video databases, surveillance applications etc. Moreover, the applications demand more efficient collections of algorithms to enable lower bit rate levels, with acceptable quality depending on application requirements. In our time, most of the video content either stored, transmitted is in compressed form. The increase in the amount of video data that is being shared attracted interest of researchers on the interrelated problems of video summarization, indexing and abstraction. In this study, the scene cut detection in emerging ISO/ITU H264/AVC coded bit stream is realized by extracting spatio-temporal prediction information directly in the compressed domain. The syntax and semantics, parsing and decoding processes of ISO/ITU H264/AVC bit-stream is analyzed to detect scene information. Various video test data is constructed using Joint Video Team.s test model JM encoder, and implementations are made on JM decoder. The output of the study is the scene information to address video summarization, skimming, indexing applications that use the new generation ISO/ITU H264/AVC video

    Learning to Hash-tag Videos with Tag2Vec

    Full text link
    User-given tags or labels are valuable resources for semantic understanding of visual media such as images and videos. Recently, a new type of labeling mechanism known as hash-tags have become increasingly popular on social media sites. In this paper, we study the problem of generating relevant and useful hash-tags for short video clips. Traditional data-driven approaches for tag enrichment and recommendation use direct visual similarity for label transfer and propagation. We attempt to learn a direct low-cost mapping from video to hash-tags using a two step training process. We first employ a natural language processing (NLP) technique, skip-gram models with neural network training to learn a low-dimensional vector representation of hash-tags (Tag2Vec) using a corpus of 10 million hash-tags. We then train an embedding function to map video features to the low-dimensional Tag2vec space. We learn this embedding for 29 categories of short video clips with hash-tags. A query video without any tag-information can then be directly mapped to the vector space of tags using the learned embedding and relevant tags can be found by performing a simple nearest-neighbor retrieval in the Tag2Vec space. We validate the relevance of the tags suggested by our system qualitatively and quantitatively with a user study

    Video Indexing and Retrieval Techniques Using Novel Approaches to Video Segmentation, Characterization, and Similarity Matching

    Get PDF
    Multimedia applications are rapidly spread at an ever-increasing rate introducing a number of challenging problems at the hands of the research community, The most significant and influential problem, among them, is the effective access to stored data. In spite of the popularity of keyword-based search technique in alphanumeric databases, it is inadequate for use with multimedia data due to their unstructured nature. On the other hand, a number of content-based access techniques have been developed in the context of image indexing and retrieval; meanwhile video retrieval systems start to gain wide attention, This work proposes a number of techniques constituting a fully content-based system for retrieving video data. These techniques are primarily targeting the efficiency, reliability, scalability, extensibility, and effectiveness requirements of such applications. First, an abstract representation of the video stream, known as the DC sequence, is extracted. Second, to deal with the problem of video segmentation, an efficient neural network model is introduced. The novel use of the neural network improves the reliability while the efficiency is achieved through the instantaneous use of the recall phase to identify shot boundaries. Third, the problem of key frames extraction is addressed using two efficient algorithms that adapt their selection decisions based on the amount of activity found in each video shot enabling the selection of a near optimal expressive set of key frames. Fourth, the developed system employs an indexing scheme that supports two low-level features, color and texture, to represent video data, Finally, we propose, in the retrieval stage, a novel model for performing video data matching task that integrates a number of human-based similarity factors. All our software implementations are in Java, which enables it to be used across heterogeneous platforms. The retrieval system performance has been evaluated yielding a very good retrieval rate and accuracy, which demonstrate the effectiveness of the developed system
    corecore