49 research outputs found

    Detecting community pacemakers of burst topic in Twitter

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ

    Improving Energy Efficiency and Security for Pervasive Computing Systems

    Get PDF
    Pervasive computing systems are comprised of various personal mobile devices connected by the wireless networks. Pervasive computing systems have gained soaring popularity because of the rapid proliferation of the personal mobile devices. The number of personal mobile devices increased steeply over years and will surpass world population by 2016.;However, the fast development of pervasive computing systems is facing two critical issues, energy efficiency and security assurance. Power consumption of personal mobile devices keeps increasing while the battery capacity has been hardly improved over years. at the same time, a lot of private information is stored on and transmitted from personal mobile devices, which are operating in very risky environment. as such, these devices became favorite targets of malicious attacks. Without proper solutions to address these two challenging problems, concerns will keep rising and slow down the advancement of pervasive computing systems.;We select smartphones as the representative devices in our energy study because they are popular in pervasive computing systems and their energy problem concerns users the most in comparison with other devices. We start with the analysis of the power usage pattern of internal system activities, and then identify energy bugs for improving energy efficiency. We also investigate into the external communication methods employed on smartphones, such as cellular networks and wireless LANs, to reduce energy overhead on transmissions.;As to security, we focus on implantable medical devices (IMDs) that are specialized for medical purposes. Malicious attacks on IMDs may lead to serious damages both in the cyber and physical worlds. Unlike smartphones, simply borrowing existing security solutions does not work on IMDs because of their limited resources and high requirement of accessibility. Thus, we introduce an external device to serve as the security proxy for IMDs and ensure that IMDs remain accessible to save patients\u27 lives in certain emergency situations when security credentials are not available

    Ubiquitous computing and natural interfaces for environmental information

    Get PDF
    Dissertação apresentada na Faculdade de CiĂȘncias e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil GestĂŁo e Sistemas AmbientaisThe next computing revolution‘s objective is to embed every street, building, room and object with computational power. Ubiquitous computing (ubicomp) will allow every object to receive and transmit information, sense its surroundings and act accordingly, be located from anywhere in the world, connect every person. Everyone will have the possibility to access information, despite their age, computer knowledge, literacy or physical impairment. It will impact the world in a profound way, empowering mankind, improving the environment, but will also create new challenges that our society, economy, health and global environment will have to overcome. Negative impacts have to be identified and dealt with in advance. Despite these concerns, environmental studies have been mostly absent from discussions on the new paradigm. This thesis seeks to examine ubiquitous computing, its technological emergence, raise awareness towards future impacts and explore the design of new interfaces and rich interaction modes. Environmental information is approached as an area which may greatly benefit from ubicomp as a way to gather, treat and disseminate it, simultaneously complying with the Aarhus convention. In an educational context, new media are poised to revolutionize the way we perceive, learn and interact with environmental information. cUbiq is presented as a natural interface to access that information

    Ethical and Unethical Hacking

    Get PDF
    The goal of this chapter is to provide a conceptual analysis of ethical, comprising history, common usage and the attempt to provide a systematic classification that is both compatible with common usage and normatively adequate. Subsequently, the article identifies a tension between common usage and a normativelyadequate nomenclature. ‘Ethical hackers’ are often identified with hackers that abide to a code of ethics privileging business-friendly values. However, there is no guarantee that respecting such values is always compatible with the all-things-considered morally best act. It is recognised, however, that in terms of assessment, it may be quite difficult to determine who is an ethical hacker in the ‘all things considered’ sense, while society may agree more easily on the determination of who is one in the ‘business-friendly’ limited sense. The article concludes by suggesting a pragmatic best-practice approach for characterising ethical hacking, which reaches beyond business-friendly values and helps in the taking of decisions that are respectful of the hackers’ individual ethics in morally debatable, grey zones

    Best Practices and Recommendations for Cybersecurity Service Providers

    Full text link
    This chapter outlines some concrete best practices and recommendations for cybersecurity service providers, with a focus on data sharing, data protection and penetration testing. Based on a brief outline of dilemmas that cybersecurity service providers may experience in their daily operations, it discusses data handling policies and practices of cybersecurity vendors along the following five topics: customer data handling; information about breaches; threat intelligence; vulnerability-related information; and data involved when collaborating with peers, CERTs, cybersecurity research groups, etc. There is, furthermore, a discussion of specific issues of penetration testing such as customer recruitment and execution as well as the supervision and governance of penetration testing. The chapter closes with some general recommendations regarding improving the ethical decision-making procedures of private cybersecurity service providers

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain

    The Ethics of Cybersecurity

    Get PDF
    This open access book provides the first comprehensive collection of papers that provide an integrative view on cybersecurity. It discusses theories, problems and solutions on the relevant ethical issues involved. This work is sorely needed in a world where cybersecurity has become indispensable to protect trust and confidence in the digital infrastructure whilst respecting fundamental values like equality, fairness, freedom, or privacy. The book has a strong practical focus as it includes case studies outlining ethical issues in cybersecurity and presenting guidelines and other measures to tackle those issues. It is thus not only relevant for academics but also for practitioners in cybersecurity such as providers of security software, governmental CERTs or Chief Security Officers in companies

    The Largest Unethical Medical Experiment in Human History

    Get PDF
    This monograph describes the largest unethical medical experiment in human history: the implementation and operation of non-ionizing non-visible EMF radiation (hereafter called wireless radiation) infrastructure for communications, surveillance, weaponry, and other applications. It is unethical because it violates the key ethical medical experiment requirement for “informed consent” by the overwhelming majority of the participants. The monograph provides background on unethical medical research/experimentation, and frames the implementation of wireless radiation within that context. The monograph then identifies a wide spectrum of adverse effects of wireless radiation as reported in the premier biomedical literature for over seven decades. Even though many of these reported adverse effects are extremely severe, the true extent of their severity has been grossly underestimated. Most of the reported laboratory experiments that produced these effects are not reflective of the real-life environment in which wireless radiation operates. Many experiments do not include pulsing and modulation of the carrier signal, and most do not account for synergistic effects of other toxic stimuli acting in concert with the wireless radiation. These two additions greatly exacerbate the severity of the adverse effects from wireless radiation, and their neglect in current (and past) experimentation results in substantial under-estimation of the breadth and severity of adverse effects to be expected in a real-life situation. This lack of credible safety testing, combined with depriving the public of the opportunity to provide informed consent, contextualizes the wireless radiation infrastructure operation as an unethical medical experiment

    Alternative site for the placement of totally implantable vascular access device (TIVAD). A case report of two successful TIVAD implantations in the thigh after femoral vein catheterization

    Get PDF
    Background: Totally implantable venous access devices (TIVADs) have improved the quality of life for seriously ill and cancer patients. These devices represent a convenient option when long-term venous access is indicated. The Subclavian and Internal Jugular Veins are the vessels of choice for catheterization [1]. However, if it is not possible to catheterize them, an alternative vein should be sought for [2]. Femoral vein can be used in such cases [3].Clinical problem: In 2 cases, it was not possible to catheterise any vein ending in the Superior Vena Cava and implant a TIVAD in the chest wall, although this was very necessary for them. Femoral vein was chosen despite higher risk of complications.Case 1: A 47 years old female with a metastatic breast cancer and infected ulcerations of the anterior chest wall. Veins in both arms were occluded. Her implanted TIVAD could not be used. Case 2: A 44 years old female who had a newly diagnosed lung cancer and Superior Vena Cava Syndrome. She was treated by a high-dose anti-coagulants.Surgical intervention: The catheter was inserted in the left femoral vein using ultrasound-guided percutaneous technique. After making a small incision, PORT-A-CATH¼ II POWER P.A.C. single-lumen standard port was implanted subcutaneously in the anterior surface of the left thigh. Verification of the catheter’s tip intra-operatively was difficult in Case 1 due to fluoroscopy problems. Prior consideration of the required instruments prevented the occurrence of a similar problem in Case 2. We performed these operations in the University Hospital of Norrland in Sweden in 2013.Follow-up: Apart from later adjustment of the catheter positioning in Case 1, we did not get any complications or problems with the use of the TIVAD. Frequent flushing of the device was recommended. Patients’ and staff’s satisfaction were good. Conclusion: Placement of TIVAD in the thigh is to be considered when the veins of the neck and upper arm are not accessible or the area on the chest wall is not appropriate for implanting the device. Experience improves with more cases.References: 1- Di Carlo I, Toro A. Choice of venous sites. Surgical Implant/technique. Springer-Verlag, Italia, 2011;43-54. 2- Toro A, Mannino M, Cappello G et al. Totally implanted venous access devices implanted in saphenous vein. Relation between the reservoir site and comfort/discomfort of the patient. Ann Vasc Surg 2012;26(8):1127.e9-1127.e13. 3- Chen SY, Lin CH, Chang HM, Hsu HM, Yu JC. A safe and effective method to implant a totally implantable access port in patients with synchronous bilateral mastectomies: modified femoral vein approach. J Surg Oncol 2008;98(3):197-199
    corecore