4,036 research outputs found

    Outlier Detection from Network Data with Subnetwork Interpretation

    Full text link
    Detecting a small number of outliers from a set of data observations is always challenging. This problem is more difficult in the setting of multiple network samples, where computing the anomalous degree of a network sample is generally not sufficient. In fact, explaining why the network is exceptional, expressed in the form of subnetwork, is also equally important. In this paper, we develop a novel algorithm to address these two key problems. We treat each network sample as a potential outlier and identify subnetworks that mostly discriminate it from nearby regular samples. The algorithm is developed in the framework of network regression combined with the constraints on both network topology and L1-norm shrinkage to perform subnetwork discovery. Our method thus goes beyond subspace/subgraph discovery and we show that it converges to a global optimum. Evaluation on various real-world network datasets demonstrates that our algorithm not only outperforms baselines in both network and high dimensional setting, but also discovers highly relevant and interpretable local subnetworks, further enhancing our understanding of anomalous networks

    A Novel Graph Centrality Based Approach to Analyze Anomalous Nodes with Negative Behavior

    Get PDF
    AbstractDetection of different kinds of anomalous behaviors originating from negative ties among actors in online social networks is an unexplored area requiring extensive research. Due to increase in social crimes such as masquerading, bullying, etc., identification and analysis of these activities has become need of the hour. Approaches from two separate, yet, similar research areas, i.e. anomaly detection and negative tie analysis, can be clubbed together to identify negative anomalous nodes. Use of best measures from centrality based (negative ties) and structure based approaches (anomaly detection) can help us identify and analyze the negative ties more efficiently. A comparative analysis has been performed to detect the negative behaviors in online networks using different centrality measures and their relationship in curve fitting anomaly detection techniques. From results it is observed that curve fitting analysis of centrality measures relationship performs better than independent analysis of centrality measures for detecting negative anomalous nodes
    • …
    corecore