9 research outputs found

    Integrated Machine Learning and Bioinformatics Approaches for Prediction of Cancer-Driving Gene Mutations

    Get PDF
    Cancer arises from the accumulation of somatic mutations and genetic alterations in cell division checkpoints and apoptosis, this often leads to abnormal tumor proliferation. Proper classification of cancer-linked driver mutations will considerably help our understanding of the molecular dynamics of cancer. In this study, we compared several cancer-specific predictive models for prediction of driver mutations in cancer-linked genes that were validated on canonical data sets of functionally validated mutations and applied to a raw cancer genomics data. By analyzing pathogenicity prediction and conservation scores, we have shown that evolutionary conservation scores play a pivotal role in the classification of cancer drivers and were the most informative features in the driver mutation classification. Through extensive comparative analysis with structure-functional experiments and multicenter mutational calling data from PanCancer Atlas studies, we have demonstrated the robustness of our models and addressed the validity of computational predictions. We evaluated the performance of our models using the standard diagnostic metrics such as sensitivity, specificity, area under the curve and F-measure. To address the interpretability of cancer-specific classification models and obtain novel insights about molecular signatures of driver mutations, we have complemented machine learning predictions with structure-functional analysis of cancer driver mutations in several key tumor suppressor genes and oncogenes. Through the experiments carried out in this study, we found that evolutionary-based features have the strongest signal in the machine learning classification VII of driver mutations and provide orthogonal information to the ensembled-based scores that are prominent in the ranking of feature importance

    Frameshift mutations at the C-terminus of HIST1H1E result in a specific DNA hypomethylation signature

    Get PDF
    BACKGROUND: We previously associated HIST1H1E mutations causing Rahman syndrome with a specific genome-wide methylation pattern. RESULTS: Methylome analysis from peripheral blood samples of six affected subjects led us to identify a specific hypomethylated profile. This "episignature" was enriched for genes involved in neuronal system development and function. A computational classifier yielded full sensitivity and specificity in detecting subjects with Rahman syndrome. Applying this model to a cohort of undiagnosed probands allowed us to reach diagnosis in one subject. CONCLUSIONS: We demonstrate an epigenetic signature in subjects with Rahman syndrome that can be used to reach molecular diagnosis

    Computational Approaches: Drug Discovery and Design in Medicinal Chemistry and Bioinformatics

    Get PDF
    This book is a collection of original research articles in the field of computer-aided drug design. It reports the use of current and validated computational approaches applied to drug discovery as well as the development of new computational tools to identify new and more potent drugs

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)

    Get PDF
    These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion

    [<sup>18</sup>F]fluorination of biorelevant arylboronic acid pinacol ester scaffolds synthesized by convergence techniques

    Get PDF
    Aim: The development of small molecules through convergent multicomponent reactions (MCR) has been boosted during the last decade due to the ability to synthesize, virtually without any side-products, numerous small drug-like molecules with several degrees of structural diversity.(1) The association of positron emission tomography (PET) labeling techniques in line with the “one-pot” development of biologically active compounds has the potential to become relevant not only for the evaluation and characterization of those MCR products through molecular imaging, but also to increase the library of radiotracers available. Therefore, since the [18F]fluorination of arylboronic acid pinacol ester derivatives tolerates electron-poor and electro-rich arenes and various functional groups,(2) the main goal of this research work was to achieve the 18F-radiolabeling of several different molecules synthesized through MCR. Materials and Methods: [18F]Fluorination of boronic acid pinacol esters was first extensively optimized using a benzaldehyde derivative in relation to the ideal amount of Cu(II) catalyst and precursor to be used, as well as the reaction solvent. Radiochemical conversion (RCC) yields were assessed by TLC-SG. The optimized radiolabeling conditions were subsequently applied to several structurally different MCR scaffolds comprising biologically relevant pharmacophores (e.g. β-lactam, morpholine, tetrazole, oxazole) that were synthesized to specifically contain a boronic acid pinacol ester group. Results: Radiolabeling with fluorine-18 was achieved with volumes (800 μl) and activities (≤ 2 GBq) compatible with most radiochemistry techniques and modules. In summary, an increase in the quantities of precursor or Cu(II) catalyst lead to higher conversion yields. An optimal amount of precursor (0.06 mmol) and Cu(OTf)2(py)4 (0.04 mmol) was defined for further reactions, with DMA being a preferential solvent over DMF. RCC yields from 15% to 76%, depending on the scaffold, were reproducibly achieved. Interestingly, it was noticed that the structure of the scaffolds, beyond the arylboronic acid, exerts some influence in the final RCC, with electron-withdrawing groups in the para position apparently enhancing the radiolabeling yield. Conclusion: The developed method with high RCC and reproducibility has the potential to be applied in line with MCR and also has a possibility to be incorporated in a later stage of this convergent “one-pot” synthesis strategy. Further studies are currently ongoing to apply this radiolabeling concept to fluorine-containing approved drugs whose boronic acid pinacol ester precursors can be synthesized through MCR (e.g. atorvastatin)
    corecore