3,288 research outputs found

    Detecting Abnormal Machine Characteristics in Cloud Infrastructures

    Get PDF
    In the cloud computing environment resources are accessed as services rather than as a product. Monitoring this system for performance is crucial because of typical pay-peruse packages bought by the users for their jobs. With the huge number of machines currently in the cloud system, it is often extremely difficult for system administrators to keep track of all machines using distributed monitoring programs such as Ganglia1 which lacks system health assessment and summarization capabilities. To overcome this problem, we propose a technique for automated anomaly detection using machine performance data in the cloud. Our algorithm is entirely distributed and runs locally on each computing machine on the cloud in order to rank the machines in order of their anomalous behavior for given jobs. There is no need to centralize any of the performance data for the analysis and at the end of the analysis, our algorithm generates error reports, thereby allowing the system administrators to take corrective actions. Experiments performed on real data sets collected for different jobs validate the fact that our algorithm has a low overhead for tracking anomalous machines in a cloud infrastructure

    A Cognitive Framework to Secure Smart Cities

    Get PDF
    The advancement in technology has transformed Cyber Physical Systems and their interface with IoT into a more sophisticated and challenging paradigm. As a result, vulnerabilities and potential attacks manifest themselves considerably more than before, forcing researchers to rethink the conventional strategies that are currently in place to secure such physical systems. This manuscript studies the complex interweaving of sensor networks and physical systems and suggests a foundational innovation in the field. In sharp contrast with the existing IDS and IPS solutions, in this paper, a preventive and proactive method is employed to stay ahead of attacks by constantly monitoring network data patterns and identifying threats that are imminent. Here, by capitalizing on the significant progress in processing power (e.g. petascale computing) and storage capacity of computer systems, we propose a deep learning approach to predict and identify various security breaches that are about to occur. The learning process takes place by collecting a large number of files of different types and running tests on them to classify them as benign or malicious. The prediction model obtained as such can then be used to identify attacks. Our project articulates a new framework for interactions between physical systems and sensor networks, where malicious packets are repeatedly learned over time while the system continually operates with respect to imperfect security mechanisms

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    SCADA System Testbed for Cybersecurity Research Using Machine Learning Approach

    Full text link
    This paper presents the development of a Supervisory Control and Data Acquisition (SCADA) system testbed used for cybersecurity research. The testbed consists of a water storage tank's control system, which is a stage in the process of water treatment and distribution. Sophisticated cyber-attacks were conducted against the testbed. During the attacks, the network traffic was captured, and features were extracted from the traffic to build a dataset for training and testing different machine learning algorithms. Five traditional machine learning algorithms were trained to detect the attacks: Random Forest, Decision Tree, Logistic Regression, Naive Bayes and KNN. Then, the trained machine learning models were built and deployed in the network, where new tests were made using online network traffic. The performance obtained during the training and testing of the machine learning models was compared to the performance obtained during the online deployment of these models in the network. The results show the efficiency of the machine learning models in detecting the attacks in real time. The testbed provides a good understanding of the effects and consequences of attacks on real SCADA environmentsComment: E-Preprin

    Review and Analysis of Failure Detection and Prevention Techniques in IT Infrastructure Monitoring

    Get PDF
    Maintaining the health of IT infrastructure components for improved reliability and availability is a research and innovation topic for many years. Identification and handling of failures are crucial and challenging due to the complexity of IT infrastructure. System logs are the primary source of information to diagnose and fix failures. In this work, we address three essential research dimensions about failures, such as the need for failure handling in IT infrastructure, understanding the contribution of system-generated log in failure detection and reactive & proactive approaches used to deal with failure situations. This study performs a comprehensive analysis of existing literature by considering three prominent aspects as log preprocessing, anomaly & failure detection, and failure prevention. With this coherent review, we (1) presume the need for IT infrastructure monitoring to avoid downtime, (2) examine the three types of approaches for anomaly and failure detection such as a rule-based, correlation method and classification, and (3) fabricate the recommendations for researchers on further research guidelines. As far as the authors\u27 knowledge, this is the first comprehensive literature review on IT infrastructure monitoring techniques. The review has been conducted with the help of meta-analysis and comparative study of machine learning and deep learning techniques. This work aims to outline significant research gaps in the area of IT infrastructure failure detection. This work will help future researchers understand the advantages and limitations of current methods and select an adequate approach to their problem

    Security of data science and data science for security

    Get PDF
    In this chapter, we present a brief overview of important topics regarding the connection of data science and security. In the first part, we focus on the security of data science and discuss a selection of security aspects that data scientists should consider to make their services and products more secure. In the second part about security for data science, we switch sides and present some applications where data science plays a critical role in pushing the state-of-the-art in securing information systems. This includes a detailed look at the potential and challenges of applying machine learning to the problem of detecting obfuscated JavaScripts
    • …
    corecore