5,343 research outputs found

    Detailed Learning in Narrow Fields – Towards a Neural Network Model of Autism

    Full text link
    Autism is a developmental disorder in which attention shifting is known to be restricted. Using an artificial neural network model of learning we show how detailed learning in narrow fields develops when attention shifting between different sources of stimuli is restricted by familiarity preference. Our model is based on modified Self-Organizing Maps (SOM) supported by the attention shift mechanism. The novelty seeking and the attention shifting restricted by familiarity preference learning modes are investigated for stimuli of low and high dimensionality which requires different techniques to visualise feature maps. To make learning more biologically plausible we project the stimuli onto a unity hyper-sphere. The distance between a stimulus and a weight vector can now be simply measured by the post-synaptic activities. The modified "dot-product" learning law that keeps evolving weights on the surface of the hyper-sphere has been employed.Validerad; 2003; 20060922 (ysko

    Acetylcholine neuromodulation in normal and abnormal learning and memory: vigilance control in waking, sleep, autism, amnesia, and Alzheimer's disease

    Get PDF
    This article provides a unified mechanistic neural explanation of how learning, recognition, and cognition break down during Alzheimer's disease, medial temporal amnesia, and autism. It also clarifies whey there are often sleep disturbances during these disorders. A key mechanism is how acetylcholine modules vigilance control in cortical layer

    Systematic AI Approach for AGI: Addressing Alignment, Energy, and AGI Grand Challenges

    Full text link
    AI faces a trifecta of grand challenges the Energy Wall, the Alignment Problem and the Leap from Narrow AI to AGI. Contemporary AI solutions consume unsustainable amounts of energy during model training and daily operations.Making things worse, the amount of computation required to train each new AI model has been doubling every 2 months since 2020, directly translating to increases in energy consumption.The leap from AI to AGI requires multiple functional subsystems operating in a balanced manner, which requires a system architecture. However, the current approach to artificial intelligence lacks system design; even though system characteristics play a key role in the human brain from the way it processes information to how it makes decisions. Similarly, current alignment and AI ethics approaches largely ignore system design, yet studies show that the brains system architecture plays a critical role in healthy moral decisions.In this paper, we argue that system design is critically important in overcoming all three grand challenges. We posit that system design is the missing piece in overcoming the grand challenges.We present a Systematic AI Approach for AGI that utilizes system design principles for AGI, while providing ways to overcome the energy wall and the alignment challenges.Comment: International Journal on Semantic Computing (2024) Categories: Artificial Intelligence; AI; Artificial General Intelligence; AGI; System Design; System Architectur

    Neural Dynamics of Autistic Behaviors: Cognitive, Emotional, and Timing Substrates

    Full text link
    What brain mechanisms underlie autism and how do they give rise to autistic behavioral symptoms? This article describes a neural model, called the iSTART model, which proposes how cognitive, emotional, timing, and motor processes may interact together to create and perpetuate autistic symptoms. These model processes were originally developed to explain data concerning how the brain controls normal behaviors. The iSTART model shows how autistic behavioral symptoms may arise from prescribed breakdowns in these brain processes.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Precis of neuroconstructivism: how the brain constructs cognition

    Get PDF
    Neuroconstructivism: How the Brain Constructs Cognition proposes a unifying framework for the study of cognitive development that brings together (1) constructivism (which views development as the progressive elaboration of increasingly complex structures), (2) cognitive neuroscience (which aims to understand the neural mechanisms underlying behavior), and (3) computational modeling (which proposes formal and explicit specifications of information processing). The guiding principle of our approach is context dependence, within and (in contrast to Marr [1982]) between levels of organization. We propose that three mechanisms guide the emergence of representations: competition, cooperation, and chronotopy; which themselves allow for two central processes: proactivity and progressive specialization. We suggest that the main outcome of development is partial representations, distributed across distinct functional circuits. This framework is derived by examining development at the level of single neurons, brain systems, and whole organisms. We use the terms encellment, embrainment, and embodiment to describe the higher-level contextual influences that act at each of these levels of organization. To illustrate these mechanisms in operation we provide case studies in early visual perception, infant habituation, phonological development, and object representations in infancy. Three further case studies are concerned with interactions between levels of explanation: social development, atypical development and within that, developmental dyslexia. We conclude that cognitive development arises from a dynamic, contextual change in embodied neural structures leading to partial representations across multiple brain regions and timescales, in response to proactively specified physical and social environment

    Visual illusions: An interesting tool to investigate developmental dyslexia and autism spectrum disorder

    Get PDF
    A visual illusion refers to a percept that is different in some aspect from the physical stimulus. Illusions are a powerful non-invasive tool for understanding the neurobiology of vision, telling us, indirectly, how the brain processes visual stimuli. There are some neurodevelopmental disorders characterized by visual deficits. Surprisingly, just a few studies investigated illusory perception in clinical populations. Our aim is to review the literature supporting a possible role for visual illusions in helping us understand the visual deficits in developmental dyslexia and autism spectrum disorder. Future studies could develop new tools – based on visual illusions – to identify an early risk for neurodevelopmental disorders
    corecore